Hierarchy and Wage Cyclicality

Yameng Fan Jiaming Huang

Universitat Pompeu Fabra

November 4, 2023

Fan and Huang (UPF)

Hierarchy and Wage Cyclicality

November 4, 2023

3 D D C E E 1 E 1

Outline

Introduction (1

Empirical Strategy and Results

- Baseline
- Wage Cyclicality Across Organizations
- Wage Cyclicality Within Multi-layer Firms

Motivation

- There is an active area of research on the macroeconomic implications of the internal organization of firms
 - Leading examples are Garicano and Rossi-Hansberg (2006), Caliendo et al. (2015), Giroud and Mueller (2019), Gumpert et al. (2022), Friedrich (2022)
- Existing work mostly focuses on the long-run
 - Example: How information and communication technology affects firm organizations; how wages of different hierarchies change as firms add or remove hierarchical layers
- Since internal organization speaks directly to intra-firm surplus sharing, a natural question is: How does it relate to the cyclical properties of wages?

This Paper Asks

- Are wages of managerial workers more cyclical? Are they more asymmetric?
- How does wage cyclicality of production workers respond to changes in managerial power?

▲ ∃ ► ∃ =

Literature

- Wage rigidity
 - Newhires/incumbents and unemployment: Bils (1985), Shimer (2005), Gertler et al. (2020), Bils et al. (2019), Schoefer (2021)
 - Heterogeneity across occupations: Avouyi-Dovi et al. (2013), Barattieri et al. (2014), Sigurdsson (2016), Hazell and Taska (2020)
- Surplus sharing
 - Intra-firm bargaining: Stole and Zwiebel (1996a), Stole and Zwiebel (1996b), Cahuc et al. (2008), Brügemann et al. (2019)
- This project:
 - empirics indicating surplus sharing among workers within the same firms
 - develop a framework to disentangle the effect of marginal productivity and extra bargaining power(future)

Outline

Data 2

Empirical Strategy and Results

- Baseline
- Wage Cyclicality Across Organizations
- Wage Cyclicality Within Multi-layer Firms

Sampling Process

Sample of Integrated Employer-Employee Data (SIEED)

Establishments:

- 1.5% random sample in West Germany, 1975-2010
- Continuous hierarchies (Caliendo et al. 2015)
- \geq 20 employees (Song et al. (2015))
- Workers:
 - Full-time, 25 -60 years old
- Wages:
 - Annual real wage deflated by CPI (100 in 2015).
 - Include bonus, no stock.

A = N A = N = I = 000

Hierarchy Definitions following Caliendo et al. (2015)

- Layer-0: Clerks, operators, production workers, e.g. Cement, stone and other building material producers (011), Tyre vulcanisers (144), Film, stage and related directors, actors, singers and dancers (835), Judges, lawyers, legal professionals and executory officers (081)
- Layer-1: Supervisors, engineers, technicians, professionals, e.g. Architects, civil and structural engineers (603), Mechanical engineering technicians (621), Judges and prosecutors (811), Economists, psychologists, sociologists, political scientists, statisticians (881)
- Layer-1': Senior experts, middle managers, e.g. Forepersons and other operations managers (629), Navigators, nautical ships' officers and pilots (721), Management, personnel and other business consultants (752), Senior and administrative state officials (762)
- Layer-2: Entrepreneurs, managing directors and division managers (751)

Number of Layers

- Following Caliendo et al. (2015), we use number of layers as a measure of firm hierarchy.
 - Select full-time, regular workers (>13 weeks in establishment e in a given year, as in Song et al. (2015))
 - Consider a firm have H layers in year t as long as $emp_{h,t} > 0$ $\forall h \in \{0, 1, ..., H - 1\}$
 - Firms without consecutive layers are excluded(non-CMR firms).
 - $H = \{0, 1, 2\}$: consider layer 1 and layer 2 as the same layer.
- Multi-layer firms generally have higher average wages, more educated workers, and less female workers; the firms are also older and larger (Summary Stats by Firm Organization

Span of Control

• For each hierarchy we measure the span of control as the relative size of employees "under control":

$$S_{h,t} = \frac{\sum_{l=0}^{h-1} NumWorkers_{l,t}}{NumWorkers_{h,t}}, \quad S_{0,t} = 0$$
(1)

where $NumWorkers_{h,t}$ is the number of workers at hierarchy h.

• The span of control serves as a proxy for the power of a hierarchy.

	Firm 1	Firm 2
Executive	0	1
Manager	1	2
Production Worker	10	5
S ₂	/	7
S_1	10	2.5
S ₀	0	0

Table: Example: Span of Control

Fan and Huang (UPF)

Hierarchy and Wage Cyclicality

November 4, 2023

10 / 22

Outline

Empirical Strategy and Results 3

- Baseline
- Wage Cyclicality Across Organizations
- Wage Cyclicality Within Multi-layer Firms

Baseline Model

$$\ln w_{ift} = y_t \beta + y_t \cdot S_{h_i, f, t-1} \theta + x'_{ift} \gamma + \lambda_{if} + \epsilon_{ift}$$

- Following Carneiro et al. (2012)
- y_t is the cyclical indicator
 - Real GDP (per capita) change
- $S_{h_i,f_i,t}$ is the span of control of worker *i* of hierarchy h_i at firm *f* in year *t*.
- *x_{ift}* includes worker age, age squared, tenure (in establishment f), education, firm age, log firm size, the share of workers with university degree, linear and quadratic time trend
- λ_{if} includes worker and firm FE
- Parameter of interest: θ represents the excess cyclicality of worker *i* when his span of control is larger.

Baseline Model: Asymmetric Wage Adjustment

$$ln w_{ift} = y_t^+ \beta^+ + y_t^+ \cdot S_{h_i, f, t-1} \theta^+ + y_t^- \beta^- + y_t^- \cdot S_{h_i, f, t-1} \theta^-$$
$$+ x_{ift}' \gamma + \lambda_{if} + \epsilon_{ift}$$

- y_t^+ (y_t^-) equals y_t if y_t is positive (negative), and zero otherwise
- Parameter of interest: ۲
 - In the presence of asymmetric wage adjustment, we should expect β^+ to be different from β^-
 - θ^+ (θ^-) represents the excess cyclicality during boom (bust)

	ΔGI)Ppp	Δ	GDP
y_t $S_{h_i,f,t-1}$	0.1920*** (0.0047) 0.0119***	0.0055*	0.1995*** (0.0050) 0.0120***	0.0048*
$y_t \cdot S_{h_i, f, t-1}$ x^+	(0.0022) -0.0003 (0.0005)	(0.0022)	(0.0022) -0.0007 (0.0006)	0.1775***
y_t^+ $y_t^+ \cdot S_{h_i, f, t-1}$		(0.0090) 0.0027**		(0.0114) 0.0046***
y_t^-		0.2003*** (0.0118)		0.2243*** (0.0125)
$y_t^- \cdot S_{h_i,f,t-1}$		-0.0061*** (0.0014)		-0.0069*** (0.0014)
# obs W + F FEs	2,316,934 ✓	2,316,934 √	2,316,934 √	2,316,934 √

Table: Wage Cyclicality and Span of Control (all firms)

+ p < 0.1, * p < 0.05, * * p < 0.01, * * * p < 0.001. The span of control of executives have mean 58.4 and standard deviation 123.5.

	ΔGI	DPpp	Δ0	GDP	
Уt	0.1920*** (0.0047)		0.1995*** (0.0050)		-
$S_{h_i,f,t-1}$	0.0119***	0.0055*	0.0120***	0.0048*	
$y_t \cdot S_{h_i, f, t-1}$	(0.0022) -0.0003	(0.0022)	(0.0022) -0.0007	(0.0022)	
y_t^+	(0.0005)	0.1879*** (0.0090)	(0.0006)	0.1775*** (0.0114)	managers enjoy
$y_t^ S_{h_i,f,t-1}$ y_t^-		(0.0009) 0.2003***		(0.0011) 0.2243***	- pay rise in boom
$y_t^- \cdot S_{h_i, f, t-1}$		(0.0118) -0.0061***		(0.0125) -0.0069***	managers avoid — pay cut
		(0.0014)		(0.0014)	in recession
∉ obs W + F FEs	2,316,934 √	2,316,934 ✓	2,316,934 ✓	2,316,934 ✓	_

Table: Wage Cyclicality and Span of Control (all firms)

+ p < 0.1, * p < 0.05, * * p < 0.01, * * * p < 0.001. The span of control of executives have mean 58.4 and standard deviation 123.5.

PW Wage Cyclicality Across Organizations

$$\ln w_{ift} = y_t \beta + \sum_{h=1}^{2} \mathbf{1} \{ O_{f,t-1} = h \} \cdot [\rho_h + y_t \cdot \theta_h] + x'_{ift} \gamma + \lambda_{if} + \epsilon_{ift}$$

$$\ln w_{ift} = y_t^+ \beta^+ + \sum_{h=1}^{2} \mathbf{1} \{ O_{f,t-1} = h \} \cdot [\rho_h + y_t^+ \cdot \theta_h^+]$$

$$+ y_t^- \beta^- + \sum_{h=1}^{2} \mathbf{1} \{ O_{f,t-1} = h \} \cdot [\rho_h + y_t^- \cdot \theta_h^-] + x'_{ift} \gamma + \lambda_{if} + \epsilon_{ift}$$

- Similar to the baseline specifications
- $O_{f,t}$ is categorical variable that equals h for a firm with h layers

3 N 2 1 2 N 0 0

	ΔGDP	ppt	ΔG	DPt	-
	0.0915***		0.104***		strongly
$1\{O_{f,t-1} = 1\}$	(0.0133) -0.6169*** (0.1020)	-0.9666** (0.1096)	(0.0135) -0.6274*** (0.1020)	-1.1730*** (0.1114)	procyclical
$1{O_{f,t-1} = 2}$	-0.7227***	-Ò.8744*´*	-0.7240***	-1.0929* ^{**}	
$y_t \times 1\{ O_{f,t-1} = 1\}$	(0.1147) -0.0194 (0.0162) 0.1524***	(0.1207)	(0.1147) -0.0096 (0.0006) 0.1667***	(0.1222)	more so for
$y_t < 1$ $0_{f,t-1} = 2$	(0.0146)		(0.0151)		multi-layer firms
y_t^+	(0.0110)	-0.0300 (0.0259)	(0.0101)	-0.1193*** (0.0308)	
$y_t^+ \times 1 \{ O_{f,t-1} = 1 \}$		0.1790***		0.3514***	
		(0.0297)		(0.0354)	
$y_t^+ \times 1\{O_{f,t-1} = 2\}$		0.2393***		0.4114***	
		(0.0279)		(0.0332)	
y_t^-		0.2638***		0.3431***	
		(0.0314)		(0.0327)	
$y_t^- \times 1\{O_{f,t-1} = 1\}$		-0.2997***		-0.3959***	
		(0.0372)		(0.0382)	
$y_t^- \times 1\{O_{f,t-1} = 2\}$		0.0315		-0.0971**	
		(0.0348)		(0.0359)	
# obs W + F FEs	1,782,898	1,782,898	1,782,898	1,782,898	-
	•	•			이오야 비로 세로 🛓

Table: Wage Cyclicality Across Organizations

Fan and Huang (UPF)

Hierarchy and Wage Cyclicality

November 4, 2023

	ΔGDF	^o pp _t	ΔG	DPt	
Уt	0.0915*** (0.0133)		0.104*** (0.0135)		
$1{O_{f,t-1} = 1}$	-0.6169***	-0.9666**	-0.6274***	-1.1730***	vincrease in boom
$1{O_{f,t-1} = 2}$	(0.1020) -0.7227***	(0.1096) -0.8744**	(0.1020) -0.7240***	(0.1114) -1.0929***	in 1-layer firm
$y_t \times 1\{ O_{f,t-1} = 1\}$	(0.1147) -0.0194	(0.1207)	(0.1147) -0.0096	(0.1222)	
$y_t \times 1 \{ O_{f,t-1} = 2 \}$	(0.0162) 0.1524***		(0.0006) 0.1667***		wage do increase in boom
y_t^+	(0.0146)	-0.0300	(0.0151)	-0.1193***	in multi-layer firm
$v_{i}^{+} \times 1\{O_{i+1} = 1\}$		0.1790***		0.3514***	
<i>y</i> _t <i>n</i> = (= <i>t</i> , <i>t</i> = 1		(0.0297)		(0.0354)	
$y_t^+ \times 1\{O_{f,t-1} = 2\}$		0.2393***		0.4114***	
		(0.0279)		(0.0332)	
y_t^-		0.2638***		0.3431***	
		(0.0314)		(0.0327)	
$y_t \times 1\{O_{f,t-1} = 1\}$		-0.2997***		-0.3959***	
		(0.0372)		(0.0382)	
$y_t \times 1\{O_{f,t-1} = 2\}$		0.0315 (0.0348)		-0.0971** (0.0359)	
# obs	1,782,898	1,782,898	1,782,898	1,782,898	
W + F FEs	\checkmark	\checkmark	1		(E) E = 𝒫𝔄𝔅

Table: Wage Cyclicality Across Organizations

Fan and Huang (UPF)

Hierarchy and Wage Cyclicality

November 4, 2023

	ΔGDI	^D pp _t	ΔG	DPt	
Уt	0.0915***		0.104*** (0.0135)		
$1\{O_{f,t-1} = 1\}$	-0.6169***	-0.9666**	-0.6274***	-1.1730***	
$1{O_{f,t-1} = 2}$ y _t ×1{ O _{f,t-1} = 1}	(0.1020) -0.7227*** (0.1147) -0.0194 (0.0162)	(0.1096) -0.8744** (0.1207)	(0.1020) -0.7240*** (0.1147) -0.0096 (0.0006)	(0.1114) -1.0929*** (0.1222)	
$y_t \times 1\{ O_{f,t-1} = 2\}$	0.1524***		0.1667***		wage decrease
y_t^+	(0.0146)	-0.0300	(0.0151)	-0.1193***	in recession in 1-layer firm
$v_{t}^{+} \times 1\{O_{f,t-1} = 1\}$		0.1790***		0.3514***	mixed effects
, , , , , , , , , , , , , , , , , , , ,		(0.0297)		(0.0354)	in recession
$y_t^+ \times 1\{O_{f,t-1} = 2\}$		0.2393***		0.4114***	/ in multi-layer inn
v ⁻		(0.0279)		0.2431***	
^y t		(0.0314)		(0.0327)	
$y_t^- \times 1\{O_{f,t-1} = 1\}$		-0.2997***		-0.3959***	
		(0.0372)		(0.0382)	
$y_t^- \times 1\{O_{f,t-1} = 2\}$		0.0315 (0.0348)		-0.0971** (0.0359)	
# obs	1,782,898	1,782,898	1,782,898	1,782,898	
VV + F FES	~	~	1	<u>(8) × (2) × (</u>	■▶ ■目目 のへの

Table: Wage Cyclicality Across Organizations

Fan and Huang (UPF)

Hierarchy and Wage Cyclicality

November 4, 2023 16 / 22

PW Wage Cyclicality and Managerial Power

$$\ln w_{ift} = y_t \beta + y_t \cdot S_{2,f,t-1} \theta + x'_{ift} \gamma + \lambda_{ift} + \epsilon_{ift}$$

$$\begin{aligned} & \ln w_{ift} = y_t^+ \beta^+ + y_t^+ \cdot S_{2,f,t-1} \theta^+ + y_t^- \beta^- + y_t^- \cdot S_{2,f,t-1} \theta^- \\ & + x_{ift}' \gamma + \lambda_{if} + \epsilon_{ift} \end{aligned}$$

- Only include production workers and multi-layer firms
- *S*_{2,*f*,*t*-1} the span of control of executives
 - θ now measures the excess cyclicality associated with higher power ۰ of executives

	ΔGI	DPpp	ΔG	DP	
Уt	0.2564***		0.2772***		-
$S_{2 f t-1}$	0.0013***	0.0015***	0.0012***	0.0013***	- higher wage leve l
$y_t \cdot S_{2,f,t-1}$	(0.0001) -0.0001	(0.0001)	(0.0001) 0.0000	(0.0001)	ingher wage level
y_t^+	(0.0000)	0.1656***	(0.0000)	0.2088***	
$y_t^+ \cdot S_{2,f,t-1}$		-0.0001***		-0.0000	
		(0.0000)		(0.0000)	
y_t^-		0.3685*** (0.0187)		0.3477*** (0.0195)	
$y_t^- \cdot S_{2,f,t-1}$		0.0002*** (0.0000)		0.0001* (0.0000)	
# obs W + F FEs	1,106,151 √	1,106,151 ✓	1,106,151 ✓	1,106,151 ✓	-

Table: Wage Cyclicality and Executive Span of Control

+ p < 0.1, * p < 0.05, * * p < 0.01, * * * p < 0.001. The span of control of executives have mean 58.4 and standard deviation 123.5.

	ΔGI	DPpp	Δ	idp	-
y_t $S_{2,f,t-1}$ $y_t \cdot S_{2,f,t-1}$ y_t^+	0.2564*** (0.0070) 0.0013*** (0.0001) -0.0001 (0.0000)	0.0015*** (0.0001)	0.2772*** (0.0001) 0.0012*** (0.0001) 0.0000 (0.0000)	0.0013*** (0.0001)	-
y_t^+ $y_t^+ \cdot S_{2,f,t-1}$		(0.0124) -0.0001***		(0.0166) -0.0000	smaller pay rise — when managers
y_t^- $y_t^- \cdot S_{2,f,t-1}$		(0.0000) 0.3685*** (0.0187) 0.0002*** (0.0000)		(0.0000) 0.3477*** (0.0195) 0.0001* (0.0000)	have power
# obs W + F FEs	1,106,151 ✓	1,106,151 ✓	1,106,151 ✓	1,106,151	-

Table: Wage Cyclicality and Executive Span of Control

+ p < 0.1, * p < 0.05, * * p < 0.01, * * * p < 0.001. The span of control of executives have mean 58.4 and standard deviation 123.5.

	ΔGI	DPpp	Δ0	DP	-
Уt	0.2564***		0.2772***		-
$S_{2,f,t-1}$	0.0013***	0.0015***	0.0012***	0.0013***	
$y_t \cdot S_{2,f,t-1}$	-0.0001	(0.0001)	0.0000	(0.0001)	
y_t^+	()	0.1656*** (0.0124)	()	0.2088*** (0.0166)	
$y_t^+ \cdot S_{2,f,t-1}$		-0.0001*** (0.0000)		-0.0000	
y_t^-		0.3685*** (0.0187)		0.3477*** (0.0195)	larger pay cut
$y_t^- \cdot S_{2,f,t-1}$		0.0002*** (0.0000)		0.0001* (0.0000)	 when managers have power
# obs W + F FEs	1,106,151 ✓	1,106,151 ✓	1,106,151 ✓	1,106,151 √	-

Table: Wage Cyclicality and Executive Span of Control

+ p < 0.1, * p < 0.05, * * p < 0.01, * * * p < 0.001. The span of control of executives have mean 58.4 and standard deviation 123.5.

Fan and Huang (UPF)

Hierarchy and Wage Cyclicality

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ November 4, 2023

Production Worker versus Managers

$$\ln w_{ift} = y_t \beta + y_t \cdot S_{h_i, f, t-1} \theta + x'_{ift} \gamma + \lambda_{if} + \epsilon_{ift}$$

$$\begin{aligned} & \ln w_{ift} = y_t^+ \beta^+ + y_t^+ \cdot S_{h_i, f, t-1} \theta^+ + y_t^- \beta^- + y_t^- \cdot S_{h_i, f, t-1} \theta^- \\ & \quad + x_{ift}' \gamma + \lambda_{if} + \epsilon_{ift} \end{aligned}$$

Same as in the baseline specification, but only include multi-layer firms

EL SQA

	ΔGI	DPpp	Δ0	ΔGDP	
y_t $S_{h_i, f, t-1}$ $y_t \cdot S_{h_i, f, t-1}$	0.2485*** (0.0062) 0.0102*** (0.0023) -0.0007	0.0043+ (0.0024)	0.2630*** (0.0068) 0.0102*** (0.0023) -0.0011 ⁺	0.0040+ (0.0023)	_
y_t^+ $y_t^+ \cdot S_{h_i, f, t-1}$ y_t^- $y_t^- \cdot S_{h_i, f, t-1}$	(0.0005)	0.1577*** (0.0117) 0.0021* (0.0008) 0.3890*** (0.0158) -0.0061*** (0.0016)	(0.0006)	0.1219*** (0.0151) 0.0035** (0.0010) 0.4209*** (0.0166) -0.0066*** (0.0015)	within the same firm type, wage growth gets more -positively skewed a span of control increases
# obs W + F FEs	1,486,742 √	1,486,742 ✓	1,486,742 ✓	1,486,742 √	_

Table: Wage Cyclicality and Span of Control (firms with CEOs)

+ p < 0.1, * p < 0.05, * * p < 0.01, * * * p < 0.001. The span of control of executives have mean 58.4 and standard deviation 123.5.

<□> <同> <同> < 回> < 回> < 回> < 回> < 回> < 回< の< ○ November 4, 2023

Outline

Introduction

2 Data

3 Empirical Strategy and Results

- Baseline
- Wage Cyclicality Across Organizations
- Wage Cyclicality Within Multi-layer Firms

4 Conclusion

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

Summary

- Workers face different levels of wage risks depending on their position and firm structure
- Production workers in single-layer firms have the highest wage risks, which are negatively skewed
 - Their wages do not increase in good times, but decrease in bad times
- Executives in multi-layer firms have the lowest wage risks, which are positively skewed
 - Their wages increase significantly in good times, but remain stable in bad times
- Production workers in multi-layer firms have moderate wage risks, depending on the managerial power of the top
 - Their wages increase in good times, but also decrease in bad times
 - Higher managerial power shifts the distribution of wage risks to the left

Appendix

Fan and Huang (UPF)

Hierarchy and Wage Cyclicality

November 4, 2023 1 / 8

Summary Statistics: Worker Characteristics by Hierarchy (FIRM SIZE 20)

hierarchy	variable	Ν	mean	sd	p25	p50	p75	p95
0	age	5,196,334	40.80	9.72	32	40	49	57
	tenure	5,196,334	6.47	5.98	1.98	4.54	9.35	19.01
	gender	5,196,334	0.31	0.46	0	0	1	1
	education	5,118,513	1.86	0.48	2	2	2	3
	complexity	5,052,961	2.07	0.49	2	2	2	3
	(log) wage	5,152,850	4.59	0.39	4.39	4.59	4.80	5.21
1	age	954,608	40.19	9.33	32	39	47	57
	tenure	954,608	6.16	5.87	1.75	4.00	9.01	18.68
	gender	954,608	0.26	0.44	0	0	1	1
	education	950,981	2.43	0.53	2	2	3	3
	complexity	954,608	3.31	0.73	3	3	4	4
	(log) wage	948,651	4.98	0.45	4.70	4.95	5.25	5.76
1'	age	161,128	41.40	9.49	33	41	49	57
	tenure	161,128	6.67	6.19	2	4.58	9.76	19.90
	gender	161,128	0.18	0.39	0	0	0	1
	education	159,916	2.35	0.54	2	2	3	3
	complexity	161,128	3.39	0.58	3	3	4	4
	(log) wage	160,326	5.05	0.47	4.78	5.03	5.33	5.83
2	age	148,479	45.64	8.82	38	45	52	58
	tenure	148,479	6.59	6.11	2	4.51	9.65	19.35
	gender	148,479	0.16	0.37	0	0	0	1
	education	146,660	2.30	0.50	2	2	3	3
	complexity	148,479	3	0	3	3	3	3
	(log) wage	148,043	5.07	0.52	4.83	5.13	5.37	5.79

According to Caliendo et al. (2015), Layer-1' includes the following occupations:

629	Industriemeister, Werkmeister	foreman, foreman
721	Nautiker	navigators
722	Technische Schiffsoffiziere, Schiffsmaschinisten	ship's engineering officers, ship's machinists
724	Binnenschiffer	barges
752	Unternehmensberater, Organisatoren	business consultants, organizers
753	Wirtschaftsprüfer, Steuerberater	auditors, tax consultants
761	Abgeordnete, Minister, Wahlbeamte	deputies, ministers, electoral officials
762	Leitende, administrativ entscheidende Verwaltungsfachleute	Senior, administratively decisive administrators
763	Verbandsleiter, Funktionäre	association leaders, officials

So in the remaining analysis we merge layer-1 and layer-2 and refer to the merged laryer as "middle managers" back

Table: Firm Characteristics by Firm Organizations (Firm Size ≥20)

	variable	Ν	mean	sd	p25	p50	p75	p95
CMR firms	firm size	53,734	114.41	382.14	26	41	87	364
	firm age	53,734	15.79	11.38	6	14	24	38
	(log) wage	53,734	4.59	0.31	4.43	4.60	4.77	5.09
	worker age	53,734	41.22	3.74	38.75	41.36	43.78	47.24
	high skill share	53,734	0.12	0.18	0	0.05	0.14	0.55
Non-CMR firms	firm size	23,659	60.89	105.47	26	38	66	163
	firm age	23,659	14.11	10.88	5.00	12.00	21.00	36.00
	(log) wage	23,659	4.57	0.30	4.40	4.57	4.75	5.08
	worker age	23,659	40.70	3.63	38.20	40.75	43.13	46.74
	high skill share	23,659	0.11	0.18	0.00	0.04	0.11	0.57

Firm Selection

Table: Worker Characteristics by Firm Organization (FirmSize 20)

MaxLayer	variable	N	mean	sd	p25	p50	p75	p95
CMR firms	age	6,147,832	41.47	9.70	33	41	49	57
	gender	6,147,832	0.28	0.45	0	0	1	1
	education	6,069,068	2.01	0.56	2	2	2	3
	complexity	5,999,027	2.35	0.78	2	2	3	4
	(log) wage	6,103,047	4.74	0.44	4.49	4.70	4.98	5.52
Non-CMR firms	age	1,440,563	40.64	9.78	32	40	49	57
	gender	1,440,563	0.32	0.46	0	0	1	1
	education	1,419,612	1.97	0.50	2	2	2	3
	complexity	1,407,104	2.24	0.68	2	2	2	4
	(log) wage	1,428,478	4.59	0.45	4.34	4.58	4.84	5.35

Worker Characteristics by Firm Organization

MaxLayer	variable	Ν	mean	sd	p25	p50	p75	p95
0	age	618,475	40.66	9.83	32	40	49	57
	gender	618,475	0.30	0.46	0	0	1	1
	education	606,124	1.88	0.43	2	2	2	2
	complexity	599,103	1.98	0.36	2	2	2	2
	(log) wage	612,532	4.45	0.44	4.22	4.48	4.69	5.12
1	age	940,120	41.26	9.88	33	41	49	57
	gender	940,120	0.36	0.48	0	0	1	1
	education	930,064	2.01	0.50	2	2	2	3
	complexity	923,861	2.25	0.79	2	2	2	4
	(log) wage	931,139	4.59	0.40	4.40	4.59	4.79	5.23
1'	age	893,489	41.84	9.86	33	42	50	58
	gender	893,389	0.30	0.46	0	0	1	1
	education	887,162	2.00	0.54	2	2	2	3
	complexity	875,078	2.31	0.76	2	2	2	4
	(log) wage	886,975	4.67	0.37	4.47	4.64	4.85	5.32
2	age	3,695,748	41.57	9.59	33	41	49	57
	gender	3,695,748	0.25	0.43	0	0	1	1
	education	3,645,718	2.04	0.59	2	2	2	3
	complexity	3,600,985	2.44	0.81	2	2	3	4
	(log) wage	3,672,401	4.84	0.43	4.57	4.80	5.09	5.63

Table: Worker Characteristics by Firm Organization (FirmSize ≥ 20)

back

(I) < (II) <

JOC ELE

Firm Characteristics by Firm Organization

MaxLayer	variable	Ν	mean	sd	p25	p50	p75	p95
0	firm size	15,600	39.65	32.58	23	29	42	96
	firm age	15,600	14.03	10.64	5	12	21	34
	(log) wage	15,600	4.43	0.31	4.25	4.47	4.62	4.91
	worker age	15,600	40.56	3.93	38	41	43	47
	high skill share	15,600	0.03	0.08	0.00	0.00	0.04	0.14
1	firm size	16,873	55.72	84.84	25	35	56	155
	firm age	16,873	15.49	10.90	6	14	23	36
	(log) wage	16,873	4.56	0.26	4.43	4.58	4.71	4.98
	worker age	16,873	41.26	3.75	39	41	44	47
	high skill share	16,873	0.12	0.19	0.00	0.05	0.14	0.58
1'	firm size	7,292	122.53	256.22	32	57	120	397
	firm age	7,292	17.58	11.86	8	16	27	39
	(log) wage	7,292	4.66	0.24	4.52	4.66	4.79	5.05
	worker age	7,292	41.84	3.72	39	42	44	48
	high skill share	7,292	0.15	0.19	0.03	0.08	0.19	0.58
2	firm size	13,969	264.57	696.15	52	101	226	820
	firm age	13,969	17.17	12.15	7	15	26	40
	(log) wage	13,969	4.77	0.28	4.59	4.76	4.94	5.25
	worker age	13,969	41.59	3.41	40	42	44	47
	high skill share	13,969	0.19	0.21	0.04	0.11	0.27	0.65

Table: Firm Characteristics by Firm Organization (Firm Size ≥ 20)

back

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

References

- Avouyi-Dovi, S., Fougère, D., and Gautier, E. (2013). Wage rigidity, collective bargaining, and the minimum wage: Evidence from french agreement data. *The Review of Economics and Statistics*, 95:1337–1351.
- Barattieri, A., Basu, S., and Gottschalk, P. (2014). Some evidence on the importance of sticky wages. *American Economic Journal: Macroeconomics*, 6:70–101.
- Bils, M., Chang, Y., and Kim, S. B. (2019). How sticky wages in existing jobs can affect hiring?. *National Bureau of Economic Research*.
- Bils, M. J. (1985). Real wages over the business cycle: evidence from panel data. *Journal of Political economy*, 93(4):666–689.
- Brügemann, B., Gautier, P., and Menzio, G. (2019). Intra firm bargaining and shapley values. *The Review of Economic Studies*, 86(2):564–592.

Cahuc, P., Marque, F., and Wasmer, E. (2008). A theory of wages and labor demand with intra-firm bargaining and matching frictions. Fan and Huang (UPF) Hierarchy and Wage Cyclicality November 4, 2023 8/8