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Abstract

This paper considers the problem of conducting inference in panel data models with
latent group structures. I introduce a quasi-Bayesian framework that combines gen-
eral classes of loss functions and priors for joint inference on the latent group struc-
tures, including group-level parameters and group assignments. Theoretically, I estab-
lish consistency of the proposed framework and derive posterior contraction rates for
the quasi-Bayesian posterior distribution. Simulation results demonstrate significant
improvements in bias and coverage for group-level parameters compared to existing
methods, especially when group assignments cannot be precisely estimated. Using the
quasi-Bayesian clustering approach, I revisit the heterogeneous income risks of house-
holds and identify two previously undetected groups. The first experiences income
increases in response to higher unemployment rates, and the second suffers substantial
income losses despite being wealthy. These findings provide new insights into the shock
amplification channels in heterogeneous agent models.
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1 Introduction

Modeling the heterogeneous behavior of economic agents has been an active research area in
economics; see Mian et al. (2013) and Postel-Vinay and Robin (2002) for prominent exam-
ples in macro and microeconomics. For theoretical, interpretability, or tractability reasons,
researchers often impose that heterogeneity can be captured by a discrete partitioning of enti-
ties, i.e., a group structure. For example, in the study of monetary transmission, households
are grouped based on financial constraints (Kaplan et al., 2018), home ownership (Cloyne
et al., 2020), or skill levels (Dolado et al., 2021). Alternatively, in labor economics, individu-
als are classified according to race (Bils, 1985), age (Dustmann et al., 2017), or geographical
location (Monte et al., 2018).

While pre-defined groupings can be convenient, economic theory often imposes a latent
group structure. For instance, at the center of the debate over aggregate shock amplifica-
tion are the hand-to-mouth households—those with a high marginal propensity to consume
(MPC). However, who are the hand-to-mouth households has remained an open question
(Aguiar et al., 2020). This has motivated the development of more agnostic approaches
for determining group structures, in which agents are placed into groups using data-driven
methods (e.g., Bonhomme and Manresa, 2015). Such methods can be used to answer a
variety of questions: Is there any heterogeneity in the population? Which entities belong to
which groups? How do different groups behave differently? And so on.

To answer these questions, existing approaches typically employ a two-step procedure:
Group assignments are estimated using methods such as k-means (Zhang et al., 2019) or
penalized estimation (Su et al., 2016). Conditional on the estimated group structure, group-
level parameters are estimated using methods such as OLS (Cytrynbaum, 2020) or GMM
(Cheng et al., 2019). While the order is logical, estimation errors compound across steps and
can thus lead to selection bias and underestimated standard errors, especially when group
assignments are difficult to determine (Leeb and Pötscher, 2005).

To circumvent such propagation of errors, I develop a quasi-Bayesian methodology for
grouped panels that allows for joint inference on the latent group structure. The framework
provides a straightforward way to quantify the uncertainty associated with the latent group
structure through posterior sampling (Wade and Ghahramani, 2018; Rigon et al., 2023).
The resulting confidence sets, in stark contrast to conventional ones, explicitly account for
parameter uncertainty in the estimated group structure. Moreover, compared with conven-
tional Bayesian clustering, the proposed quasi-Bayesian framework is more robust to model
misspecification, due to the use of general loss functions instead of the exact likelihood. This
is crucial as Bayesian clustering can suffer from biases in the presence of misspecification
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(Guha et al., 2021).
The proposed quasi-Bayesian framework comprises three ingredients. First, a criterion

or loss function that identifies the group structure in the population. Popular examples
considered include the least squares loss (Bonhomme and Manresa, 2015), the GMM crite-
rion (Huang, 2021), and the quantile loss (Zhang et al., 2019). Second, a prior that assigns
nonzero probability to the true parameters in the latent group structure. Examples include
the finite mixtures prior (e.g., Miller and Harrison, 2018) and the graphical Laplacian prior
(e.g., Kim and Gao, 2020). These priors enable consistent estimation while allowing for
efficient sampling algorithms. Third, a learning rate parameter that controls the bias and
variance of the quasi-posterior distributions. A higher learning rate puts more weight on the
loss component, reducing variance but increasing the risk of selection bias. Conversely, a
lower learning rate puts more weight on the prior component, enhancing robustness to mis-
specification but potentially increasing variance. In practice, the learning rate is calibrated
using bootstrap methods to improve inference.

Theoretically, this paper establishes the first frequentist guarantees for a general class of
quasi-Bayesian clustering models. Specifically, I establish consistency and derive contraction
rates for the quasi-Bayesian posterior distribution under a set of high-level conditions, en-
compassing flexible classes of criterion functions and priors. The general results quantify the
tradeoffs between model specification, data requirement, and prior knowledge, which can be
used to discipline the primitive conditions in clustering. I then provide primitive conditions
for two popular estimators, the M-estimator and the GMM estimator, under which posterior
consistency holds, and derive the corresponding posterior contraction rates. Importantly,
similar strategies could be applied in future work to examine other loss functions or priors
proposed in the Bayesian clustering literature, for which classical contraction results can be
difficult to derive (e.g., Duan and Dunson, 2021).

The theoretical results build on two main observations. First, the quasi-posterior distri-
bution is dominated by the loss component under regularity conditions. For instance, the
prior must put sufficient mass around the true parameters, leading the posterior draws to
concentrate around the sample loss minimizer. Second, as the sample loss converges to its
population counterpart, the posterior distribution concentrates around the population loss
minimizer. If the identification condition holds—meaning that the true parameters of in-
terest are the population loss minimizer—this guarantees the concentration of the posterior
draws around the true parameters. Consequently, the posterior contraction rate is deter-
mined by (i) the identification condition, (ii) the uniform convergence of the sample loss,
and (iii) the prior mass condition. This provides an alternative approach, in contrast to the
classical posterior convergence result by Ghosal and van der Vaart (2007), for establishing
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contraction rates through the lens of empirical risk minimization.
In practice, the quasi-Bayesian framework can be implemented with a computationally

efficient blocked Gibbs sampler where we iterate between drawing group assignments and
group-level parameters. In particular, each block can easily incorporate efficient MCMC
samplers to improve computational performance.1 For instance, Metropolis-Hastings algo-
rithms facilitate sampling in non-conjugate models (Chernozhukov and Hong, 2003), and
Particle Gibbs methods can improve mixing rates (Bouchard-Cote et al., 2017). Further, the
number of latent groups is often unknown. The quasi-Bayesian approach accounts for this
uncertainty by specifying a prior on the group number, and I show the posterior ratio consis-
tency for the resulting quasi-posterior. This implies that we can simply select the number of
groups using the posterior mode, thereby avoiding the need to evaluate intractable integrals
as typical in conventional methods (e.g., Kass and Raftery, 1995).

Compared with existing approaches, the advantages of the quasi-Bayesian framework are
threefold. First, uncertainty in the estimated group structure can be readily measured in
the proposed framework, whereas it remains a challenging task using frequentist methods.2

Second, the framework enables coherent incorporation of estimation uncertainty in the group
structure when conducting inference on the group-level parameters. This allows researchers
to construct confidence sets that are free from the selection bias. Finally, the framework
avoids specifying the exact likelihood of the data, which is often intractable due to the pres-
ence of heteroskedasticity and autocorrelation of unknown form. Moreover, with the learning
rate calibration, the quasi-Bayesian approach is more robust to (likelihood) misspecification
than conventional Bayesian clustering methods.

I illustrate the advantages of the proposed method in a large-scale simulation study. First,
conditional on the correct specification of the group number, the coverage probabilities of
quasi-Bayesian confidence sets remain close to the nominal level even with low signal-to-noise
ratios and heteroskedasticity (Stock and Watson, 2008). In contrast, conventional confidence
sets as constructed in Bonhomme and Manresa (2015) or Su et al. (2016) severely under-
cover in the presence of misclassification errors. Second, when the data is informative, e.g.,
when the time series dimension is large, quasi-Bayesian confidence sets perform competi-
tively as the conventional ones in terms of both the coverage and the length of confidence
intervals. Moreover, the root mean squared error of the quasi-Bayesian estimator follows
closely the frequentist counterpart. Third, the quasi-Bayesian posterior is able to measure
the uncertainty in the number of groups, and the posterior mode converges to the true group

1See, for example, Robert et al. (2018) for a recent review on scalable MCMC methods.
2While a frequentist mixture model accommodates uncertainty in group assignments, it is unable to

quantify uncertainty in the number of groups. Further discussion on the motivation for Bayesian clustering
can be found in Bishop and Svensen (2012).
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number as the sample size increases.
With the quasi-Bayesian clustering approach, I revisit the literature on cyclical income

risks using a biennial panel on household income from the PSID from 1999 to 2009. Specifi-
cally, I examine the heterogeneity in the elasticity of log earnings to the unemployment rate.
While previous studies classify households according to demographic proxy variables (e.g.,
Busch et al., 2022; Patterson, 2023), I directly estimate the latent group structure based on
the heterogeneity in earnings elasticities.

The proposed method reveals three latent groups with significant heterogeneity in income-
unemployment elasticities. Notably, I identify one cluster of wealthy households with sub-
stantial asset holdings that experience earnings increases in response to higher unemployment
rates, akin to the findings of Guvenen et al. (2014). However, I also document a group of rich
households that suffer considerable income losses during recessions, despite not being liquid-
ity constrained. This discovery challenges the conventional wisdom that poor, constrained
households are most vulnerable to economic downturns, thereby casting doubt on shock
amplification mechanisms in heterogeneous agent models. Moreover, no single demographic
indicator can fully capture the documented group differences, highlighting the importance of
latent group heterogeneity. Crucially, the revealed group patterns are also missed by popular
k-means clustering methods (Bonhomme and Manresa, 2015). In summary, the empirical
application underscores the advantages of the proposed method for flexibly detecting hetero-
geneous cyclical income dynamics, while simultaneously improving estimation and inference
on group-level parameters through joint modeling.

The remainder of this paper is organized as follows. I continue this introduction by relat-
ing the quasi-Bayesian to the existing literature. Section 2 provides an illustrative example
of the setup and contrasts the existing approaches with the proposed method through a
minimal simulation study. I then formally presents the quasi-Bayesian framework in Sec-
tion 3 for which the asymptotic properties are developed in Section 4. Section 5 evaluates
the finite sample performance of the quasi-Bayesian approach and Section 6 presents the
empirical application. Section 7 concludes. All proofs as well as additional simulation and
empirical results are relegated to the Appendix.

1.1 Related Literature

This paper relates to several strands of literature.
First, this paper adds to the extensive literature on recovering latent group heterogeneity

in panel data models. Bonhomme and Manresa (2015) apply the k-means algorithm to re-
cover the group structure in linear models and show consistency and asymptotic normality for
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the resulting estimator, which is further extended to factor models by Ando and Bai (2017),
quantile models by Zhang et al. (2019), nonlinear GMM models by Cheng et al. (2019), and
general M-estimation settings by Liu et al. (2020). Similar results have also been established
among the class of penalization-based estimators, including those with L1-penalty (Su et al.,
2016) and SCAD penalty (Wang et al., 2018), in settings with cross-sectional dependence
(Su and Ju, 2018) or cointegration (Huang et al., 2020). However, these methods may suffer
from severe size distortion in the presence of non-negligible misclassification errors — a point
well appreciated in the clustering literature (Lu and Zhou, 2016). In such cases, e.g., when
T is modest or small, clustering estimators are only guaranteed to converge to pseudo-true
parameters, which may differ from the true parameters (Pollard, 1981, 1982). The proposed
quasi-Bayesian approach generalizes previous methods, akin to Park and Casella (2008)’s
extension of Lasso. Specifically, the maximum a posteriori estimate is shown to be equiva-
lent to the frequentist estimate under certain conditions. Moreover, the proposed framework
improves upon past techniques in several aspects. To begin with, it accounts for uncertainty
in group structure through posterior samples, which remains a challenging task within fre-
quentist framework. Additionally, it produces more robust confidence sets, even when the
group structure cannot be precisely estimated.

Second, this paper contributes to the long-standing literature on Bayesian clustering.
Within the standard Bayesian framework, the literature has evolved by developing prior
classes that induce a group structure, including for example the product partition (PP) prior
(Quintana and Iglesias, 2003) and the mixture of finite mixture (MFM) prior (Miller and
Harrison, 2018), and by developing more efficient sampling procedures, such as the reversible
jump MCMC (Richardson and Green, 1997) and Gibbs sampling (Ishwaran and James,
2001). Given the prior choice, the standard Bayesian approach proceeds by specifying the
exact likelihood, which has been applied in various economic applications (Kim and Wang,
2019; Ren et al., 2022; Zhang, 2023). However, the full data distribution may sometimes
be intractable or simply unavailable. In light of this, this paper joins recent advances in
generalized Bayesian clustering literature where the exact likelihood is replaced by some loss
function; see for example Duan and Dunson (2021) using pairwise distances as the loss and
Rigon et al. (2023) using within-cluster distances as the loss. Although flexible, specifying
only a loss function leads to a misspecified likelihood, under which classical results on the
posterior contraction such as Nguyen (2013) no longer hold (Guha et al., 2021).3 It is then
unclear what assumptions are required to provide frequentist guarantees. This paper fills this

3Since the pseudo-likelihood can be view as a special class of loss functions, this paper is also remotely
related to the literature on the asymptotic properties of Bayesian posteriors under misspecification (e.g.,
Kleijn and van der Vaart, 2012).
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gap by providing the first consistency and posterior contraction results in the quasi-Bayesian
clustering framework, for general classes of loss functions and priors.

Third, this paper contributes to the theoretical literature on quasi-Bayesian inference.
The pioneering works by Chernozhukov and Hong (2003) and Kim (2002) establish the
asymptotic properties of the quasi-Bayesian estimator. More recently, theoretical properties
of the quasi-Bayesian framework have been studied in high-dimensional problems (Atchadé,
2017; Petrova, 2019; Yano and Kato, 2020), and nonparametric settings (Kato, 2013; Syring
and Martin, 2020). For finite-dimensional models, inference has typically relied on the local
asymptotic normality condition (LAN), based on which Bernstein-von Mises theorem can
be derived to establish the posterior contraction rate (e.g., Chernozhukov and Hong, 2003).
For high-dimensional or infinite-dimensional models, posterior contraction results typically
require the uniformly consistent tests (UCT) assumption (e.g., Ghosal and van der Vaart,
2017, Theorem 6.16), under which convergence in weak topology can be derived.4 Following
Miller (2021), the current paper considers a different route, by exploiting the close connection
between the quasi-Bayesian approach and empirical risk minimization — a fact that is well
established to demonstrate risk performance of the quasi-Bayesian estimator (Jiang and
Tanner, 2008; Grunwald and Mehta, 2020; Alquier, 2023).

Fourth, this paper also speaks to the emerging empirical literature exploiting latent group
heterogeneity in panel data models. Early contributions typically sort economic entities
based on ex ante characteristics (e.g., Guvenen et al., 2014). More recently, clustering ap-
proaches have found applications across various fields of economics, such as labor economics
(Bonhomme et al., 2019; Gregory et al., 2021; Abbott and Gallipoli, 2022), political economy
(Gratton et al., 2021; Acemoglu et al., 2019), and macroeconomics (Chen et al., 2019). The
proposed framework serves as an external validation to the group structure identified by
these studies. This is particularly useful given that the panel data setups considered often
feature short time series but large cross-sections, where misclassification errors are likely.

Finally, this paper contributes to the extensive literature on heterogeneous income risks
(Low et al., 2010; Guvenen et al., 2014). Since the influential work by Storesletten et al.
(2004), estimating heterogeneous income cyclicalities has become crucial, as the cyclicalities
constitute an important set of moments in structural macro models (Auclert, 2019; Patter-
son, 2023). Moreover, cyclical income patterns are closely related to inequality and social
insurance design (Blundell et al., 2016). This paper adds to the literature by employing an
agnostic approach to recover the latent group structure in income-unemployment elastici-
ties. Additionally, the revealed group patterns cannot be explained by popular demographic

4One notable exception is Syring and Martin (2023) where they prove posterior concentration rates for
sub-exponential type loss functions. Our framework includes such losses as a special case.
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indicators (e.g., Busch et al., 2022; Figueiredo, 2022; Almgren et al., 2022), underscoring the
importance of unobserved heterogeneity in understanding income dynamics.

2 Illustrative example

In this section, I illustrate the quasi-Bayesian framework informally for a canonical linear
panel data model with grouped coefficients, and compare its performance to some of the
currently available methods.

Consider
yit = x⊤itβγi + ϵit , t = 1, . . . , T, i = 1, . . . , N , (1)

where yit is the scalar outcome, xit is a d×1 vector of covariates, βγi is the grouped parameter
of interest, and ϵit is the error term. Specifically, the slope parameter is indexed by the group
membership indicator γi so that when γi = γj = g, units i and j share the same coefficients
βg, with G the number of groups and γi ∈ {1, . . . , G}. The above model therefore strikes
a balance between the fully pooled model with homogeneous coefficients (βγi = β, ∀i) and
the fully heterogeneous model with distinct unit-specific coefficients βi. Due to its simplicity
and flexibility, model (1) has been widely used in the empirical finance and macro literature
(e.g., Chen et al., 2019; Huang et al., 2023).

For now, the group number G is assumed known, and the goal is to recover the group-
level coefficients β = (β1, . . . , βG) ∈ BG ⊂ Rd×G and the group assignment vector γ =

(γ1, . . . , γN)
⊤ ∈ ΓG ⊂ [G]N . The estimation of G is discussed in the general methodology

section 3.

2.1 Existing methods

Conventional methods start by minimizing the following objective function:

(β̂, γ̂) = argmin
β∈BG,γ∈ΓG

1

NT

N∑
i=1

T∑
t=1

(yit − x⊤itβγi)2 + λPen(β) (2)

where Pen(β) is a penalty function that can induce group sparsity, and λ is a tuning pa-
rameter. Including the penalty term is not necessary and in the absence thereof (2) can
be solved by an iterative two-step procedure: (i) given the group-level parameters β assign
units to groups so that the least squares objective function is minimized and (ii) given the
group assignment γ estimate group-level parameters using least squares.

Existing works typically proceed as if the assignment vector γ is perfectly recovered by
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γ̂, and derive the asymptotic distribution of group-level parameters β̂g given γ̂. Denoting
the true grouped parameter by β0

g , the estimation errors of β̂g can then be decomposed as

β̂g − β0
g =

(∑
i,t

1{γ̂i = g}xitx⊤it

)−1(∑
i,t

1{γ̂i = g}
[
xitx

⊤
it(β

0
γ0i
− β0

g ) + xitϵit

])
. (3)

Under the assumption that γ̂ converges to γ0 sufficiently fast, it implies that (e.g. Bonhomme
and Manresa, 2015, Corollary S2)

√
NgT (β̂g − β0

g )
d→ N(0, Vg) + op(1), g = 1, . . . , G (4)

where Vg is the standard sandwich-form asymptotic variance.
This two-step procedure has some limitations, due to its inherent difficulty of conducting

inference on the group assignment γ̂.5 The first limitation is its inability to evaluate the
validity of pre-defined grouping criteria, thereby restricting the applicability of the clustering
approach. To address this, model-based clustering methods such as finite mixture models
and Bayesian clustering have been proposed. However, these approaches rely on a correctly
specified generative model for the data, making estimates sensitive to model misspecification.

A second limitation concerns the potential bias and under-coverage for the group-level
parameters β̂. As decomposition (3) indicates, the estimated cluster does not center at the
true parameter β0

g , unless the group assignments are perfectly recovered γ̂ = γ0. Addition-
ally, inference based on (4) is prone to the selection bias (Tibshirani et al., 2016), due to the
dependence of γ̂i on {xitϵit}Tt=1. Correction of such bias turns out to be challenging beyond
the homoskedastic setup (Gao et al., 2022).

2.2 Quasi-Bayesian clustering

To overcome these limitations, I introduce a quasi-Bayesian framework that allows for joint
inference on both the group structure and the group-level parameters while preserving ro-
bustness against model misspecification.

Specifically, the quasi-Bayesian framework combines the loss function (2) with a prior
π(β,γ) on the group structure through a learning rate ψ. The resulting quasi-posterior

5A notable exception is Dzemski and Okui (2021) where the authors construct confidence sets for group
membership by inverting unit-specific tests. It would be interesting to see how the resulting confidence sets
can be used to improve inference for group-level parameters.
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density πNT (β,γ) is defined as

πNT (β,γ) =
exp

[
−ψ

∑N
i=1

∑T
t=1(yit − x⊤itβγi)2

]
π(β,γ)∫

exp
[
−ψ

∑N
i=1

∑T
t=1(yit − x⊤itβγi)2

]
π(β,γ) dβdγ

. (5)

The quasi-posterior density replaces the likelihood function in the standard Bayesian pos-
terior with an exponential loss. This substitution offers two key advantages. First, the loss
function avoids the need to fully specify the data distribution, and researchers can concen-
trate on the parameters of interest. Second, the learning rate ψ enhances model robustness,
by trading off between prior and data evidence. For instance, a smaller ψ puts more weight
on the prior, thereby improving robustness to model misspecification.

Next, I illustrate the framework with concrete examples of the prior and the learning
rate. A natural choice is a finite mixture prior on the group structure γ, and an independent
normal prior on the group-level parameters β (e.g., Diebolt and Robert, 1994), such that

π(β,γ) = π(β)π(γ) = π(γ|η)π(η)
∏G

g=1 π(βg)

η = (η1, . . . , ηG) ∼ Dirichlet(αdir), αdir ≥ 1

γi|η ∼ Categorical(η1, . . . , ηG), i = 1, . . . , N

βg ∼ N(µ,Σ), Σ p.d. g = 1, . . . , G

. (6)

With the above prior, the quasi-posterior distribution (5) can be sampled efficiently using
a blocked Gibbs sampler presented in Algorithm 0. Specifically, the algorithm iterates be-
tween two blocks: (i) given the group-level parameters β, sample group assignments by the
Pólya urn scheme (Pitman, 1996) and (ii) given the group assignment γ, sample group-level
parameters from a multivariate normal distribution.

Notice that Algorithm 0 closely resembles the iterative procedure discussed in the pre-
vious section. Consider first the group assignment step. The crucial difference is that the
group assignments are updated probabilistically rather than deterministically. To see why
this is important, denote the set of units in group g as Cg, and Cg,−i indicates unit i is
removed from Cg. The posterior odds ratio is given by

πNT (γi = j|β)
πNT (γi = k|β)

= exp

[
−ψ

∑
t

(
(yit − x⊤itβj)2 − (yit − x⊤itβk)2

)
+ ln

|Cj,−i|+ αdir

|Ck,−i|+ αdir

]
, (7)

which is of order exp [O(1)− ψO(T )] when the group sizes are of similar scales. In the
limiting case where T → ∞, the posterior odds ratio is dominated by the excess loss and
thus the quasi-Bayesian maximum-a-posteriori (MAP) estimator reduces to the k-means
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estimator. In finite sample, however, (7) is non-zero and can be large when the sample size
is small or when the sample loss is flat. This allows the quasi-Bayesian estimator to explore
alternative model spaces (group assignments) and thereby escape local optima. Further, the
estimation of grouped parameters (9) takes into account the sampling uncertainty of βg. As
a result, the posterior draws of βg automatically incorporate the uncertainty in both model
specification and parameter estimation. By averaging grouped parameters across different
group assignments, the posterior distribution may perform better than estimates conditional
on a particular assignment.

Algorithm 0 Quasi-Bayes Clustering: Illustrative example
The mth MCMC iteration computes:

1: Sampling Assignment. Given β(m−1), draw for i = 1, . . . , N

γ
(m)
i ∼ πNT (γi = g|β(m−1)) ∝ exp

[
− ψ

∑
t

(yit − x⊤itβ(m−1)
g )2

]
(|C(m−1)

g,−i |+ αdir) . (8)

2: Sampling Grouped Parameters. Given γ(m), draw for g = 1, . . . , G

β(m)
g ∼ N(µ̃, Σ̃), µ̃ = Σ̃−1

[
2ψYgXg + µ⊤Σ−1

]
, Σ̃−1 = 2ψX⊤

g Xg + Σ−1 (9)

where Yg = (yi)i∈C(m)
g

and Xg = (xi)i∈C(m)
g

are the stacked data assigned to group g.

A well-known issue with the proposed framework is that inference based on the quasi-
posterior distribution generally leads to incorrect coverage of the parameters of interest. This
is because the loss component can be viewed as a misspecified likelihood, which violates
the generalized information equality and yields an incorrect asymptotic variance matrix
(Chernozhukov and Hong, 2003; Müller, 2013).

Nevertheless, the learning rate ψ can be calibrated to improve the coverage. Intuitively,
the posterior odds (7) collapse to the prior odds when ψ → 0, reflecting total disregard for the
observed data. The resulting posterior distribution is as dispersed as the prior. In contrast,
the quasi-posterior reduces to a dirac mass at the k-means estimate when ψ → ∞. The
learning rate ψ therefore controls the dispersion of the posterior distribution, and thereby the
coverage of confidence sets. In practice, this is achieved by updating the learning rate in the
spirit of Syring and Martin (2019). Specifically, given an initial guess ψ(0), researchers update
the learning rate based on the gap between the desired coverage level and the empirical
coverage computed using bootstrap. When the empirical coverage exceeds the desired level,
the learning rate is increased—reflecting a higher weight on the loss component—and vice
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versa. The algorithm terminates when the empirical coverage is within a small tolerance of
the desired level. Further details are given in Section 3.3.

It is interesting to contrast the above approach with existing bootstrap proposals to
improve inference on β̂g. For instance, Bonhomme and Manresa (2015) propose to estimate
the asymptotic variance Vg in (4) by cross-sectional bootstrap. However, this alternative
is unlikely to improve inference for two reasons. First, decomposition (3) indicates that
the estimator β̂g is biased whereas the bootstrap proposal focuses only on the variance
estimation. Second, parameter estimation in each bootstrapped sample is subject to selection
bias, potentially leading to overly small asymptotic variance estimates (Neufeld et al., 2022).
Therefore, it is unclear how these bootstrapped estimates improve inference.

Finally, the above discussions extend to more general loss functions and priors, outlined
in Section 3. Computationally, Algorithm 0 can be easily adapted by augmenting (8) and
(9) with additional steps to update the parameters. For example, when the prior is non-
conjugate, researchers can sample βg from the full conditional posterior with a Metropolis-
Hastings-within-Gibbs algorithm. Alternatively, it is well known that the sequential alloca-
tion of γi in (8) may lead to slow mixing. More advanced partition samplers such as the
Particle-Gibbs Split-Merge sampler may be applied (Bouchard-Cote et al., 2017).

2.3 Small simulation study

I conclude this section with a small scale simulation study where I compare the performance
of the quasi-Bayesian clustering approach with the k-means estimator (Lin and Ng, 2012).
Specifically, I simulate data from (1) where xi,t

i.i.d.∼ N(0, I2) and I2 is a 2×2 identity matrix.
There are three latent groups with group-level coefficients β1 = (0.4, 1.6)⊤, β2 = (1.0, 1.0)⊤

and β3 = (1.6, 0.4). I consider homoskedastic errors ϵit
i.i.d.∼ N(0, σ2) where the error variance

σ2 varies across designs to reflect different signal-to-noise ratios. Finally, I consider different
sample sizes with (N = 100, T = 20) and (N = 100, T = 10). The quasi-Bayesian
estimator uses the finite-mixture and normal prior (6), with hyperparameter αdir = 1.0 and
uninformative Gaussian prior βg

i.i.d.∼ N(0, 100I2). The learning rate ψ is estimated using the
bootstrap calibration approach described in Section 3.3. Throughout, I assume that the true
number of groups is known. The simulation setup resembles the design of Su et al. (2016).

Besides the estimation and inference of the group-level parameters, it is also of interest
to study the performance for the estimation of average effects. In particular, the population
average effects of model (1) is given by AE = E[βγi ], which can be estimated by ÂE =
1
N

∑N
i=1 β̂γ̂i . For the quasi-Bayesian approach, the posterior average effects in the spirit of

Bonhomme and Weidner (2022) can be obtained by the MAP estimator (β̂MAP, γ̂MAP) that
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maximizes the quasi-posterior (5) among the MCMC draws. Further, the quasi-Bayesian
approach also facilitates easy construction of the confidence sets for the average effects using
posterior quantiles.

Table 1: Performance metrics: illustrative example

Sample Size Metrics
σ2 = 1.0 σ2 = 2.0

QB KM QB KM

N = 100, T = 10

AC 79.96 82.89 54.20 58.65
BR 36.75 20.68 51.18 17.71
RMSE 30.19 21.90 80.08 90.25
Coverage 96.56 74.39 97.44 34.33
RMSE (AE) 3.37 3.46 7.15 7.43
Coverage (AE) 98.00 - 97.50 -

N = 100, T = 20

AC 94.53 94.64 64.56 71.61
BR 24.47 19.07 42.26 16.68
RMSE 16.26 10.80 53.82 48.94
Coverage 96.06 89.00 98.06 52.50
RMSE (AE) 2.38 2.39 4.91 4.98
Coverage (AE) 96.33 - 97.50 -

Note: This table reports the classification accuracy (AC), the confidence
bands ratios with respect to the unit-level least-squares estimator (BR), the
RMSE of the group-level parameters, the RMSE of the average effects, and
the coverage probabilities for the quasi-Bayes estimator and the k-means es-
timator respectively. To evaluate accuracy and bands ratio, maximum-a-
posteriori (MAP) estimator γ̂MAP is used; RMSE is computed using the pos-
terior mode of the quasi-posterior, and coverage rates are calculated as the
2.5% and 97.5% quantiles of the posterior draws. The coverage rates for k-
means estimator is calculated using confidence intervals with cluster-robust
standard errors as in Stock and Watson (2008). AC, BR and Coverage are
in percentage terms, and RMSE are multiplied by 100.

Table 1 reports the results. Several patterns stand out. First, when the sample size is
large and the data is informative, the k-means estimator accurately recovers the latent group
assignment. However, the classification accuracy severely deteriorates when the time series
dimension is limited (T = 10) or when the data is noisy (σ2 = 2). Consistent with the analysis
of (7), the classification accuracy of the quasi-Bayesian MAP estimator is strictly lower than
the k-means estimator, even more so when the data is uninformative. This is because in
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those scenarios the quasi-Bayesian approach puts more weight on the uninformative prior
component.

Second, the average lengths of the confidence intervals of the quasi-Bayesian estimator
are inflated when compared to the k-means estimator, but they remain competitive when
compared with unit-level confidence intervals. Again, this results from the fact that the
quasi-Bayesian estimator explores the model space. Interestingly, the RMSE of the posterior
mode outperforms the k-means counterparts in some cases, reflecting the merits of averaging
different group structures when estimation uncertainty is high.

Third, it is striking that the coverage probabilities of the k-means confidence sets fall
below the nominal 95% level in all four designs considered, with coverage rates as low as
34.3%. In stark contrast, the quasi-Bayesian confidence sets remain above the nominal
level throughout. Fourth, the superior performance of the quasi-Bayesian estimator also
holds when estimating the average effects: the quasi-Bayesian approach not only delivers
lower RMSE than k-means clustering, but also provides confidence intervals for the posterior
average effects with good empirical coverage.

3 General methodology

This section introduces a general quasi-Bayesian framework for clustering in panel data
models. Section 3.1 presents the model and examples of loss functions and priors that may
be included. Section 3.2 provides the implementation details including the selection of the
number of groups, and Section 3.3 discusses the learning rate selection.

3.1 Modeling framework

We observe p×1 vectors wi,t for individual units i = 1, . . . , N and time periods t = 1, . . . , T .
Each unit i is associated with a d × 1 vector of parameters βi. We assume that there is
a partition of the data into G groups that are indexed by the group membership indicator
γi ∈ {1, . . . , G}. The parameters βi are constant within each group but vary across groups,
i.e., βi = βγi and βi ̸= βj if γi ̸= γj. The goal is to recover both the group membership
γ = (γ1, . . . , γN)

⊤ and the group-level parameters β = (β1, . . . , βG), from which researchers
may calculate the object of interest ζ = f(β,γ) as a functional of β and γ. Examples 1-2 are
two popular choices.6 For notational brevity, we collect the set of parameters by θ = (β,γ).

We consider a loss function liT (βγi) = l(wi, βγi) where wi = (wi,1, . . . , wi,T )
⊤ is the data

6Since the group labels are not identifiable, we require f(·, ·) to be invariant under relabeling of the
groups.
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matrix for unit i. The true parameter θ0 is defined as the unique minimizer of the population
loss function

θ0 = argmin
θ

LN(θ), LN(θ) =
1

N

N∑
i=1

E [liT (βγi)] . (10)

Motivated by the population problem (10), a popular frequentist extremum estimator is

θ̂ = argmin
θ

LNT (θ), LNT (θ) =
1

N

N∑
i=1

liT (βγi) . (11)

Examples 3-5 illustrate the specification of loss functions for popular estimators.
To model the latent group structure, we consider a class of group-sparsity inducing prior

π(θ) for θ. Examples 6 and 7 are some popular choices that are compatible with the current
framework.

The quasi-Bayesian clustering framework combines the criterion function in (11) and the
prior π(θ), through a learning rate ψ > 0, leading to the quasi-posterior distribution

ΠNT (A) =

∫
A
exp [−NTψLNT (θ)] π(θ)dθ∫

Θ
exp [−NTψLNT (θ)] π(θ)dθ

. (12)

Several comments are in order. First, the loss function formulation (10) encompasses a
large class of panel data models in the literature, among them popular examples are lin-
ear models with exogenous covariates (Bonhomme and Manresa, 2015; Cytrynbaum, 2020),
moment condition models (Fernández-Val and Lee, 2013; Cheng et al., 2019), binary choice
models (Su et al., 2016; Liu et al., 2020), and censored models (Hahn and Kuersteiner, 2011;
Wang and Su, 2021).

Second, in principle LN(θ) can be any arbitrary loss function which identifies the pa-
rameters of interest in population. When NTψLNT (θ) is the negative log-likelihood of the
data, (12) reduces to standard Bayesian posterior for clustering (e.g., Ren et al., 2022; Smith,
2022; Zhang, 2023). When NTψLNT (θ) disagrees with the exact likelihood, as it is often
the case, the quasi-posterior distribution still provides a coherent way of updating the prior
beliefs given the data (Bissiri et al., 2016). In particular, the quasi-posterior distribution
ΠNT solves the following minimization problem (e.g., Zhang, 2006, Proposition 5.1)

inf
Π̃

{∫
NTLNT (θ)Π̃(dθ) + ψ−1KL(Π̃|Π)

}
(13)

where KL(Π̃|Π) is the KullbackLeibler divergence between Π̃ and the prior Π, and the
infimum is taken over all Π̃ that are absolutely continuous with respect to Π. Therefore,
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the quasi-Bayesian posterior is the solution of the (integrated) empirical risk minimization,
while penalizing the deviation from the prior.

Overall, the proposed framework resembles the recent quasi-Bayesian clustering ap-
proaches (e.g., Duan and Dunson, 2021; Rigon et al., 2023; Natarajan et al., 2023). However,
the choice of loss functions often lacks theoretical justification in existing quasi-Bayesian clus-
tering, and asymptotic properties of the posterior distributions are unknown. In contrast,
I consider loss functions of which the parameters of interest are the extremum estimators,
and study large sample asymptotics of the posterior distributions, building on the recent
literature on panel data models with latent group structure (Bonhomme and Manresa, 2015;
Liu et al., 2020; Cytrynbaum, 2020).

Examples: parameters, loss functions and priors

Example 1 (Ordered group-level parameters (Frühwirth-Schnatter, 2006)). A natural object
of interest is the collection of group-level parameters β = (β1, . . . , βG). However, matrix β is
not invariant to relabeling of groups. To ensure identification, we may impose an inequality
constraint such that

ζ = (βσ(1), . . . , βσ(G)) (14)

where σ : [G]→ [G] is a permutation such that βσ(1) ≤ . . . ≤ βσ(G). Further, we may consider
various statistics based on the ordered group-level parameters such as the maximal effects
ζ = max{β1, . . . , βG}. △

Example 2 (Average effects (Bonhomme and Weidner, 2022)). When the aggregate effects
are of interest, we can calculate the average effects across different groups by ζ = 1

N

∑N
i=1 βγi .
△

Example 3 (Linear model with grouped heteroskedasticity (Aguilar and Boot, 2022)). We
can modify the linear model (2) to accommodate grouped variance structure

liT (wi, βγi) =
1

T

T∑
t=1

[
σγi + σ−1

γi
(yit − x⊤it β̃γi)2

]
(15)

where βγi = (β̃⊤
γi
, σγi)

⊤, and σγi ∈ R+ is the square root of error variance for unit i in group
γi. It is well known that when xit includes time dummy variables, the exact likelihood of
the data is subject to singularity problem (Hamilton, 1991). The loss function (15) however
remains well defined and can be used to estimate the group-level parameters. △
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Example 4 (Moment model (Hansen, 1982)). Consider a model with moment conditions
E[m(wi,t; β

0
γ0i
)] = 0. We can set

liT (wi, βγi) =

(
1

T

T∑
t=1

m(wi,t; βγi)

)⊤

Ω̂i

(
1

T

T∑
t=1

m(wi,t; βγi)

)
(16)

where Ω̂i is a weighting matrix. For example, we may set Ω̂i = V̂ (βγi)
−1 where V̂i,h is

the Newey and West (1987) variance estimate of 1√
T

∑T
t=1m(wi,t; βγi).7 The loss (16) has

wide applications in economics and finance, including for example models with instrumental
variables, and rational expectations models. △

Example 5 (Binary choice model (Arellano and Carrasco, 2003)). Let F (·) be the condi-
tional CDF of standard normal (logistic) distribution, the probit (logit) model is specified
via

−liT (wi, βγi) =
1

T

T∑
t=1

[
yit lnF (yit − x⊤itβγi) + (1− yit) ln(1− F (yit − x⊤itβγi))

]
. (17)

This class of models is widely used in empirical applications where we observe binary outcome
yit, including for example models of labor supply decisions and portfolio choices. △

Example 6 (Diffuse Partition Prior (Gao et al., 2020)). When researchers have little prior
knowledge of the latent group structure, a natural choice is a diffuse prior

G ∼ π(G) ∝ exp [−CN logG]

γ ∼ π(γ) = 1
|ΓG|

(18)

where |ΓG| is the set of group assignments that gives G groups. Notice that ΓG can
also incorporate parameter constraints. For example, Gao et al. (2020) require γ to be
drawn uniformly from assignments such that group-level covariates are of full column rank.
Alternatively, one may require the partitions to satisfy minimal group size requirement:
ΓG = {γ : |Cg| ≥ n ∀g}. △

Example 7 (Graph Structured Sparisty Priors (Kim and Gao, 2020)). The group structure
θ = (β,γ) can be equivalently re-parameterized as a graph (V,E) with V = [N ] being the

7Notice that the GMM criterion induced by (16) is different from the fully pooled criterion, i.e., LNT (θ) =

(
∑

i

∑
tm(wit;βγi))

⊤
Ω̂ (
∑

i

∑
tm(wit;βγi)). Although (16) generally leads to inefficient estimates (Su et al.,

2016; Huang, 2021), it is necessary to identify the latent group structure. For example, in the context of
structural break estimation, Hall et al. (2012) shows that the pooled GMM criterion is not uniquely minimized
at the true break points.
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nodes and E ⊂ {(i, j) : 1 ≤ i < j ≤ N} the edges, such that

π(θ
∣∣λ) ∝ ∏

(i,j)∈E exp
[
− ∥βi−βj∥2

2(ν0λij+ν1(1−λij))

]
π(λ|η) ∝

∏
(i,j)∈E η

λij(1− η)1−λij

η ∼ Beta(a, b)

(19)

where ν0 is a small scalar and ν1 a large scalar. When λij = 1, the above prior encour-
ages a smaller ∥βi − βj∥, similiar to methods that penalize pairwise parameter differences
(Yang et al., 2019; Mehrabani, 2023). Moreover, the above prior also admits an alternative
parameterization where each unit coefficient βi shrinks towards unknown cluster center µj

π(θ
∣∣λ) ∝ N∏

i=1

G∏
j=1

exp

[
− ∥βi − µj∥
2(ν0λij + ν1(1− λij))

]
(20)

which corresponds to the classifier-Lasso estimator Su et al. (2016). The alternative formu-
lation explicitly takes the number of G as input, and thus requires an additional MH step
to update the number of groups. △

3.2 Implementation details

We are now ready to describe the implementation details of the quasi-Bayesian clustering
algorithm. Our goal is to efficiently sample from the quasi-posterior (12), which gives:

πNT (β,γ) ∝ exp[−Tψ
∑

iliT (βγi)]π(β,γ) . (21)

As is suggested in the previous section, it is straightforward to sample from πNT (β,γ) with
a blocked Gibbs sampler, described as follows:

Algorithm 1 Generic Quasi-Bayes clustering: Blocked Gibbs
Data {wit}, initial parameters γ0 and β(0) , number of MCMC draws M .

1: for m=1,...,M do
2: Sample group assignments. γ(m) ∼ πNT (γ|β(m−1)).
3: Sample group-level parameters. β(m) ∼ πNT (β|γ(m)).
4: end for

Below I first present a canonical full conditional Gibbs sampler for updating the group
assignment γ with mixture-of-finite-mixture (MFM) prior (6). Overall, Algorithm 2 is a
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variant of the “Algorithm 8” of Neal (2000), extended to the setup with mixture of finite
mixture priors (Miller and Harrison, 2018) and (generally non-conjugate) loss functions.

The conditional posterior density contains two components. The first component evalu-
ates the exponential loss function, which measures how well parameter β fits the data. The
second component comes from the MFM prior on partition, similar to the classical Chinese
Restaurant Process (CRP). When the number of groups G is fixed, the prior component
depends only on the group size Cg,−i and the hyper-parameter α for Dirichlet process, which
assigns higher probability to the assignment to a large group. When the number of groups
is estimated, the MFM prior imposes a penalty term VN,G+1/VN,G, which shrinks to zero as
G increases and thus is able to control the number of groups (Miller and Harrison, 2018).
Furthermore, compared with the illustrative example, (8), here the algorithm introduces H
auxiliary variables as suggested by Neal (2000). Intuitively, whenever a new group assign-
ment is drawn, the loss component is evaluated at a new group-level parameter β drawn
from its prior distribution. In case of diffuse prior, the probability of generating a new group
is low, leading to slow convergence of the MCMC chain. By drawing H additional β, the
algorithm increases the probability of generating new assignments and thus facilitates the
sampler to explore the model space.

Another noticeable feature is that the number of groups G is generated by a deterministic
mapping from the sampled assignment vector γ. This is one of the main benefit of the MFM
prior, as researchers are free from manually searching over the varying dimensional parameter
space, i.e., the number of groups G. In contrast, classical MFM prior involves an additional
Metropolis-Hastings (MH) block to determine the number of groups (Richardson and Green,
1997), which is computationally intensive.

Algorithm 2 Mixture-of-finite-mixture: Pólya urn scheme

Data {wit}, prior π(β), penalty VN,G =
∑∞

K=1

K(G)

(αK)(N)π(G|λ).
1: for i=1,...,N do
2: Let G = |C−i| be the number of groups when unit i is excluded. Sample γi from

πNT
(
γi
∣∣γ−i,β) ∝

exp [−TψliT (βg)] (|Cg,−i|+ α) g ∈ {1, . . . , G}

exp [−TψliT (βg)] VN,G+1

VN,G

α
H

g ∈ {G+ 1, . . . , G+H}
. (22)

Whenever g > G, a new βg is sampled from its prior.
3: end for

Note: Here x(b) = x · · · (x+ b− 1), x(0) = 1 and x(b) = x · · · (x− b+ 1), x(0) = 1. If x < b, set x(b) = 0.

Next we would like to sample from the conditional posteriors for grouped parameters βg.
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Given the general class of loss functions, it is typically difficult to find conjugate priors as in
Section 2.2. Instead, we can always supplement the Gibbs sampler with a Metropolis step
(Chernozhukov and Hong, 2003). Below I give an example for efficient parameter updates.
For more general cases see Robert et al. (2018) and the reference therein.

Algorithm 3 updates group-level parameters with the Robust Adaptive Metropolis (RAM)
sampler (Vihola, 2012). Compared with classical Metropolis-Hastings algorithm, the RAM
sampler is both more robust and more efficient. For one thing, it avoids using the covariance
matrix among posterior samples, which may not exist or positive definite in practice. For
another, the algorithm remains adaptive since the scaling matrix S(m) is data dependent.

Algorithm 3 Sampling βg: Robust Adaptive Metropolis (RAM)
Input: Proposal density q(·) for β, s1 lower diagonal matrix with positive diagonal elements,
{ηn} step size sequence converging to 0, α∗ target acceptance rate.

1: Draw proposal β̃ = β(m) + S(m−1)U , where U ∼ q.
2: Accept proposal draw with acceptance ratio α(m) = min{1, π(β̃)/π(β)}.
3: Update the lower-diagonal matrix S(m) such that

S(m)S(m)⊤ = S(m−1)

(
I + ηn(αn − α∗)

U (m)U (m)⊤

∥U (m)∥2

)
S(m−1)⊤ (23)

Selecting the number of groups G
Several methods have been proposed for selecting the number of groups (G) within a Bayesian
clustering framework. Popular examples include the Deviance Information Criterion (DIC)
(Spiegelhalter et al., 2002), variants of the Bayesian information criterion (BIC) (Drton and
Plummer, 2017), and the Bayes factor (Kass and Raftery, 1995). However, establishing
consistency of these criteria is generally difficult in Bayesian mixture models, especially in
the presence of model misspecification (Fúquene et al., 2019).

Given these challenges, we opt for a simple approach of choosing the group number based
on the posterior mode averaged across MCMC iterations, for which I derive posterior ratio
consistency similar to Narisetty et al. (2019). The posterior mode strikes a reasonable balance
between uncertainty quantification and computational tractability for our application, in
contrast with marginal likelihood-based information criteria. Nonetheless, estimating the
number of groups G remains an active area of research in Bayesian clustering, and integrating
more advanced model selection methods could be a promising direction for future work.
To summarize, we select the number of groups using the posterior mode for its simplicity,
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flexibility, and adequate performance for our modeling needs. More complex Bayesian model
selection techniques may further improve performance but introduce additional complexity.

3.3 Learning rate selection

This section discusses the selection of learning rate parameter ψ in practice. Suppose we
are interested in some functional of the parameters ζ = f(β,γ) and would like to construct
confidence sets of ζ. A natural choice is to use quantiles of {ζ(m)}Mm=1 for M posterior samples
from the quasi-posterior distribution πNT (β,γ). As is discussed in Section 2.2, the learning
rate ψ controls directly the dispersion of the posterior distribution—through its ability to
explore alternative model spaces in the assignment step (8) and the sampling uncertainty in
the parameter updating step (9)—and thereby the width of the confidence sets. In particular,
as the learning rate decreases, the posterior gets more tilted toward the prior distribution,
leading to more conservative confidence sets.

Therefore, a heuristic choice updates the learning rate as follows (Syring and Martin,
2019)

ψ(j+1) ← ψ(j) + (j + 1)−a
(
Pψ(j) − (1− α)

)
(24)

where j = 0, 1, . . . is the temperature of the updating scheme and a is a cooling rate which
facilitates the convergence of the updating scheme.8 Pψ(j) is the population coverage prob-
ability of the confidence sets of interest, which depends on the current learning rate ψ(j).
Intuitively, when the coverage probability exceeds the desired nominal level (1 − α), the
posterior distribution is too dispersed, and we would like to increase the learning rate so as
to reflect a higher weight on the data. Therefore, whenever Pψ(j) − (1−α) > 0, the learning
rate is increased and vice versa.

Although the updating scheme (24) is attractive, it requires knowledge of the population
coverage probability Pψ(j) , which in turn requires knowledge of the true parameter ζ0 and
the true probability distribution of the data. Syring and Martin (2019) propose to replace
both objects through bootstrap.9

Specifically, for each bootstrapped sample, we apply Algorithm 1 to obtain an estimate,
e.g., the posterior mode, of the parameter of interest ζ. The unknown population parameter
ζ0 is then approximated by the bootstrap average estimator. In a similar vein, although
the true data distribution Pψ(j) is unknown and thus cannot be used to evaluate coverage

8In practice, I follow Syring and Martin (2019) and set a = −0.51. Alternative choices affect the speed
of the convergence but the results are robust to different cooling rates.

9Since the time series dimension T is relatively short in the current setup, I use cross-sectional resampling
bootstrap as in Kapetanios (2008). Alternatively we may consider cross-sectional dependence bootstrap
proposed by Gonçalves and Perron (2020).
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probability, we can approximate it using the average coverage rates across bootstrapped
samples.

Algorithm 4 Learning Rate Calibration
For a given learning rate ψ(j), do the following until |P̂ψ(j) − (1− α)| < 1

B

1: Bootstrap Posterior. For b = 1, . . . , B, resample with replacement {w(b)
it }Ni=1 from the

data, and sample from posterior distribution π
∗(b)
NT (β,γ;ψ

(j)) using Algorithm 1.
2: Compute Empirical Coverage. Construct confidence sets CS(b) and point estimate
ζ(b) from π

∗(b)
NT (β,γ;ψ

(j)), where ζ is a function of the parameters β and γ. Compute the
empirical coverage rate P̂ψ = 1

B

∑
b 1
{
ζ ∈ CS(b)

}
where ζ = 1

B

∑
b ζ

(b).
3: Update Learning Rate. For a given threshold α, update the learning rate by ψ(j+1) =

ψ(j) + (j + 1)−a(P̂ψ(j) − (1− α)).

Interestingly, the above calibration procedure can be viewed as a way to enhance al-
gorithmic stability, a property that is recently exploited for valid post-selection inference
(Zrnic and Jordan, 2023). As an illustration, Figure 1 presents the posterior densities of a
group-level parameter for two bootstrapped samples, with varying learning rate. Panel 1(a)
shows the case with relatively large ψ, under which each bootstrapped sample provides dis-
tinct point estimates. As a by-product, the empirical coverage of the confidence sets will
be far below the desired level. As the learning rate decreases, the posterior densities of the
two bootstrapped samples start to overlap, indicating that the algorithm produces more and
more stable estimates. In the extreme case when ψ is close to zero, Panel 1(d) shows that the
posterior densities fully overlap, and the resulting posterior modes are identical. Although
the point estimates are still consistent, the confidence sets will be overly conservative. There-
fore, similar to Zrnic and Jordan (2023), the learning rate calibration yields a sequence of
confidence intervals with tunable width, reflecting the bias and variance tradeoffs.
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(a) ψ = 3.0 (b) ψ = 1.0

(c) ψ = 0.25 (d) ψ = 0.05

Figure 1: Learning Rate Calibration

Note: The figure presents variations of the posterior densities of a group-level parameter for
two bootstrapped samples, with varying learning rate. The original data is generated as in
(1) with N = 100 and T = 10, and the bootstrapped samples are generated by cross-sectional
resampling. The true parameter value is β = 1.6.

Apart from the calibration procedure outlined above, alternative methods have been
proposed to select the learning rate. For example, Lyddon et al. (2019) propose to calibrate
ψ to match the asymptotic Fisher information, and Fasiolo et al. (2021) chooses learning
rate so that the asymptotic variance of the parameters of interest is close to the sandwich-
form covariance (Müller, 2013). Although both methods are more computationally efficient
than the current approach, they are developed for finite dimensional models. It would be
interesting to extend these approaches to the current framework in the future.
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4 Asymptotic properties

This section establishes frequentist guarantees for the quasi-Bayesian clustering framework.
We start with a general consistency and posterior contraction rate result under a set of high-
level conditions. Section 4.1 and 4.2 provide primitive conditions for popular estimation
methods, including generalized method of moments (GMM) and M-estimation, under which
the general result applies. Before we move on, let us introduce some notation. For any
parameters θ = (β,γ) and θ̃ = (β̃, γ̃), define the following (pseudo) metrics:

dMS(θ, θ̃) =
1

N

N∑
i=1

∥βγi − β̃γ̃i∥2, dM(θ, θ̃) =
1

N

N∑
i=1

1
{
γi ̸= γ0i

}
(25)

dH(θ, θ̃) =max

{
max

g∈{1,...,G2}
min

g̃∈{1,...,G1}
∥β̃g̃ − βg∥, max

g̃∈{1,...,G1}
min

g∈{1,...,G2}
∥β̃g̃ − βg∥

}
(26)

where ∥ · ∥ denotes the Euclidean norm. Similar to the notation of posterior density πNT (·),
the posterior distribution of θ is denoted by ΠNT (·).

Below we give general results on the asymptotic properties of the quasi-posterior distribu-
tion (12). To better understand the asymptotic behavior of the quasi-posterior distribution,
it is helpful to rewrite the posterior as the following:

ΠNT (A) =

∫
A
exp [−NTψ (LNT (θ)− LN(θ) + LN(θ)− LN(θ0))] π(θ)dθ∫

Θ
exp [−NTψ (LNT (θ)− LN(θ) + LN(θ)− LN(θ0))] π(θ)dθ

(27)

where A = {d(θ, θ0) ≤ ϵ} ⊂ Θ is the neighborhood of the true parameter θ0 defined by
some metric d(·, ·). Decomposition (27) suggests that for the quasi-posterior to concentrate
around A, we would need three assumptions: (1) to separate the true parameter from its
neighborhood values, i.e., lower bounding LN(θ)−LN(θ0); (2) to control the approximation
errors LNT (θ) − LN(θ) resulting from using the sample loss; and (3) to discipline the prior
knowledge π(θ) so that the denominator does not vanish too fast. The following assumptions
formalize the intuition.

Assumption 1. Let d(·, ·) be some (pseudo) metric on Θ×Θ. We assume that the following
conditions hold:

A. (Identification). We have infθ : d(θ,θ0)>ϵ LN(θ)− LN(θ0) > χ̃(ϵ).

B. (Uniform convergence). supθ∈Θ
∣∣LNT (θ)− LN(θ)∣∣ = op(1).

C. (Prior mass). Π({θ : LN(θ)− LN(θ0) ≤ ϵ}) ≥ c̃NT (ϵ) for some non-stochastic se-
quence c̃NT possibly depending on the sample size.
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Overall, Assumption 1 is similar to the conditions required in Miller (2021, Theorem 3)
and Syring and Martin (2023, Section 3). Specifically, Assumption 1.A requires that the
population loss is uniquely minimized at the true parameters θ0. This assumption is stan-
dard in the literature on grouped panel data models; see for example Assumption A1(ii) in
Su et al. (2016). Assumption 1.B requires uniform convergence of the sample loss function
to its population counterpart. This assumption is relatively mild and can be verified under
various primitive conditions as in Newey (1991). Finally, Assumption 1.C imposes a prior
mass condition in the spirit of condition (2.4) in Ghosal et al. (2000). Intuitively, such con-
ditions requires that the prior distribution does not shrink too fast around the neighborhood
{θ : LN(θ)− LN(θ0) ≤ ϵ} of the true parameters, which guarantees that the denominator of
the quasi-posterior distribution (12) is lower bounded. In practice, such prior mass condition
may be hard to verify. Therefore, we often supplement it with some continuity condition on
the loss, which translates the control over excess loss LN(θ)−LN(θ0) to the control over the
distance d(θ, θ0); see for example Assumption 4.D below.

With the above assumptions, we have the following result on the consistency of the
quasi-posterior distribution.

Theorem 1. Under Assumption 1, we have for any ψ > 0 and for some δ > 0

E0ΠNT

({
θ : d(θ, θ0) > ϵ

})
≤ exp [−NTψ (χ̃(ϵ)− o(1)− δ)]

c̃NT (δ)
. (28)

The above theorem provides a unified framework to understand the consistency of the
quasi-posterior distribution. As is clear, the quasi-posterior is consistent only when

χ̃(ϵ)− o(1)− δ + ln c̃NT (δ)

NTψ
> 0 . (29)

This effectively reflects the tradeoff between the signal strength, the regularity of the loss
function and the data, and the prior distribution. Specifically, the first term χ̃(ϵ) comes
from the identification condition and measures the strength of the signal. The second term
arises from the approximation of the sample loss function to the population loss, which
under uniform convergence condition is o(1). The third term comes from the restriction
that the excess loss is controlled LN(θ) − LN(θ0) ≤ δ. Finally, the fourth term is the prior
mass condition, which measures the complexity of the estimation problem; see for example
discussions in Grunwald and Mehta (2020).

Notice that (29) trivially holds when χ̃(ϵ) = O(1). In this case, we can always select
an arbitrarily small δ such that χ̃(ϵ) − δ − o(1) > 0. However, recall that by construction
c̃NT (δ) ≤ 1. Imposing a small δ essentially inflates the fourth term ln c̃NT (δ), which reflects
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the tradeoff between prior informativeness and the regularity of the loss function. In the case
of strong signal χ̃(ϵ) = O(1), this tradeoff does not matter, since ln c̃NT (δ)

NTψ
is o(1). However,

such tradeoff can be important in two cases. First, when we consider posterior contraction
rates, ϵ is no longer some fixed constant but some vanishing sequence ϵNT → 0. In this
case, χ̃(ϵ) has to shrink at a slower rate than ln c̃NT (δ)

NTψ
, which serves as an effective bound on

the posterior contraction rate. Second, in some cases, the parameter θ may not be strongly
identified, where χ(ϵ) is vanishing even with fixed ϵ > 0. In this case, the prior mass condition
c̃NT (δ) plays a crucial role in ensuring the consistency of the quasi-posterior distribution.
Moreover, the lower bound χ̃(ϵ) depends on the choice of the distance metric d(·, ·), which
can affect the consistency of the quasi-posterior distribution. In the next subsection, I discuss
the choice of distance metric in more details.

A natural follow up question is how fast the quasi-posterior distribution contracts around
the true parameter. Specifically, we aim to find a sequence ϵNT → 0 such that

E0ΠNT

({
θ : d(θ, θ0) > ϵNT

})
→ 0 . (30)

To this extent, I follow the recent literature that establishes posterior contraction rates by
exploiting the close connection between quasi-Bayesian approach and empirical risk mini-
mization (Grunwald and Mehta, 2020; Syring and Martin, 2023). In particular, the PAC-
Bayesian literature has long studied the risk performance of the quasi-Bayesian framework,
by deriving various useful PAC-Bayes inequalities (e.g., Alquier, 2023). Moreover, such in-
equalities are often “model-free” and thus facilitates adaptation to different setup. Below I
state a concentration rate result based on the risk bound in Jiang and Tanner (2008).

Assumption 2. Let d(·, ·) be some (pseudo) metric on Θ×Θ. We assume that the following
conditions hold:

A. (Identification). We have {θ : d(θ, θ0) ≥ ϵNT} ⊆ {θ : LN(θ)− LN(θ0) ≥ a(ϵNT )}.

B. (Uniform convergence). P0

(
supθ∈Θ

∣∣LNT (θ)− LN(θ)∣∣ ≥ a(ϵNT )
5

)
= bNT .

C. (Smoothness). There exists some constant 0 < c̃M < ∞ such that
∣∣LN(θ)− LN(θ̃)∣∣ ≤

c̃Md(θ, θ̃) for any θ, θ̃ ∈ Θ.

D. (Prior mass). Π({θ : d(θ, θ0) ≤ ϵNT}) ≥ c(ϵNT ) for some non-stochastic sequence cNT
possibly depending on the sample size.

Overall, the above assumptions are similar to Assumption 1, except that the dependence
between convergence rates are explicitly assumed. Specifically, Assumption 2.A is implied by
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primitive conditions in Theorem 3 of Miller (2021). Assumption 2.B is a stronger version of
1.B, as aNT is now a vanishing sequence depending on ϵNT .The smoothness condition remains
the same and is stated for completeness. Finally, the prior mass condition is imposed on the
distance metric d(·, ·) instead of the loss function. Given the assumptions, we have

Theorem 2. Under Assumption 2, we have

E0ΠNT

({
θ : d(θ, θ0) ≥ ϵNT

})
≤ bNT +

exp
[
−2

5
NTψa(ϵNT )

]
c(a(ϵNT )/5cM)

(31)

The above theorem provides a succinct summary of the driving forces behind the con-
vergence rate. First, as ϵNT converges to 0, we would expect a(ϵNT ) also converging to zero,
which leads to a larger bNT . Therefore, the uniform convergence rate of the loss function
serves as the first constraint of the posterior convergence rate. Second, the convergence rate
is further constrained by the prior mass condition. On the one hand, the function c(·) can
possibly depend on the data dimension N and T . On the other hand, as a(ϵNT ) gets smaller,
the prior mass also shrinks towards zero. The rate at which ϵNT converges to zero depends
on the specific prior and uniform convergence rate Similar patterns are already revealed in
(29).

Finally, it is often difficult to determine the number of groups G in practice. Below, I
provide a result on the posterior ratio consistency, under a slightly stronger assumption of
prior.

Assumption 3. For k ∈ {1, 2, . . .}, assume that

A. Π(G = k) > 0.

B. Π({C : |Cg|/N > 0}) = 1 .

C. Π(βg = βl|G = k) = 0 for 1 ≤ g < l ≤ k.

D. inf∥β−β0
γ0
i

∥≥ϵ E[liT (β)− liT (β0
γ0i
)] > χ̌(ϵ) > 0.

The above assumptions are similar to Condition 2.2 in Miller (2023). The first part
assumes that the prior assigns positive mass on the (true) number of groups G, which is a
necessary condition for the prior mass condition 1.C. The second assumption imposes that
the group-sizes are non-negligible.10. The third assumption requires that the group-level
parameters are distinct.11 In practice, it is imposed by augmenting the priors with the

10In terms of Bayesian mixture model, it is equivalent to assume that mixture weigths η1, . . . , ηG > 0
(Miller, 2023)

11A probabilistic approach for such constraint is the repulsive prior with penalty on similar group-level
parameters; see for example Natarajan et al. (2023).
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constraints that βg ̸= βl for g ̸= l. For example, in case of the MFM-normal priors as in (6),
Assumption 3.C is satisfied if the prior is modified to12

π(β,γ) = π(γ|η)π(η)

(
G∏
g=1

π(βg)

)
1 {β : βg ̸= βl, 1 ≤ g < l ≤ G} . (32)

The final assumption is the identification condition, imposed at the individual-level loss,
which facilitates the comparison of pooled loss under various partitions. Overall, the assump-
tion imposes identifiability constraints on the model, which greatly simplifies the asymptotic
analysis of the number of groups. In the absence of such constraint, overfitting G leads
to degenerate group structure, where either group-level parameters are allowed to coincide
across groups, or group shares are vanishing as the sample size increases, both make the
interpretation of the latent group structure difficult. Given the above assumptions, we have
the following result on the posterior ratio consistency.

Theorem 3. Under Assumption 1 and 3.C, we have for some 0 < c < 1,

max
G ̸=G0

πNT (G)

πNT (G0)
≤ exp [−NTψ (cχ̌(ϵ)− o(1)− δ)]

c̃NT (δ)
. (33)

The above theorem serves as a posterior ratio consistency result, comparable to Theorem
3 in Duan et al. (2023), but weaker than the strong selection consistency where

∑
G

πNT (G)
πNT (G0)

p→
0 (Narisetty et al., 2019). It is clear that the posterior ratio converges to zero under conditions
similar to (29). The theorem implies that the mode of the quasi-posterior distribution is
highest in the true number of groups G0, and thus the posterior mode can be used to select
the number of groups.

In the following subsections, I provide primitive conditions for popular estimators, in-
cluding generalized method of moments (GMM) and M-estimation, under which the general
result applies.

4.1 M-estimation

Consider the following M-estimation problem in grouped panels (Liu et al., 2020; Wang and
Su, 2021):

LNT (θ) =
1

NT

N∑
i=1

T∑
t=1

h(wit; βγi) (34)

12See Kim and Gao (2020) for more examples of structural constraints on the group-level parameters.
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where −h(wit; βγi) is the logarithm of the (pseudo) likelihood function as in example 5. In
this section, we apply the general results to the above loss with the mixture of finite mixture
prior on the group structure, and a normal prior on the group level parameters (6). We first
impose a set of regularity conditions as follows:

Assumption 4 (M-estimation).

A. β0
g ∈ B for all g = 1, . . . , G0 where B is a convex compact subset of Rd.

B. {wit}t=1,...,T are independent across i. For each i, it is stationary strong mixing with
mixing coefficient αi, and α ≡ maxi αi satisfies α(τ) ≤ cαρ

τ for some cα > 0 and
ρ ∈ (0, 1).

C. For any ϵ > 0, we have

min
i

 inf
∥β−β0

γ0
i

∥2>ϵ

1

T

T∑
t=1

E
[
h(wit; β)− h(wit; β0

γ0i
)
] = χ(ϵ) > 0 . (35)

D. There exists a non-negative function M(·) such that supβ∈B |h(w; β)| ≤ M(w), and
|h(w; β)− h(w; β̃)| ≤M(w)∥β − β̃∥ for all β, β̃ ∈ B. Moreover, supi E

∣∣M(wit)
∣∣q < cM

for some cM <∞ and q ≥ 6.

E. Assume that N2 = O(T q/2−1) where q ≥ 6 is the same constant in 4.D.

F. G0 is fixed and ming ̸=l∥β0
g − β0

l ∥ > 0 for all g, l ∈ {1, . . . , G0}.

G. For all g ∈ {1, . . . , G0}, limN→∞
1
N

∑N
i=1 1{γ0i = g} > η > 0.

H. Assume that the finite mixture prior on the group structure and the normal prior on
the group-level parameters are given by (6).

Overall, Assumption 4 is similar to Assumption A1 in Su et al. (2016), which is standard
in the grouped panel literature (e.g., Bonhomme and Manresa, 2015; Liu et al., 2020; Huang,
2021). In particular, 4.A assumes that the parameter space B is compact and thus the
diameter diam(B) < ∞. 4.F requires that the group-level parameters are well-separated,
and 4.G imposes that the true group sizes are non-negligible. Assumption 4.B requires the
data to be strong mixing with geometric mixing rate, which facilitates the use of Bernstein
type inequality (e.g., Merlevède et al., 2011). Assumption 4.D is a smoothness condition on
the loss function, and requires the envelope function M(wit) to have finite sixth moment.
Finally, Assumption 4.E allows the time series dimension to grow slower than the cross-
sectional dimension. Notice that Assumptions 4.B-4.E may be relaxed. For example, if
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we impose a faster decay rate in 4.B, e.g., exponential decay such as Assumption 2(c) in
Bonhomme and Manresa (2015), then we could allow the cross-sectional dimension to be
much larger than the time series dimension. The crucial point is that the tradeoffs among
different conditions embodied in (29) is preserved. With the above assumptions, we have
the following result.

Theorem 4 (Consistency). Under Assumption 4 and known G, we have for any ϵ > 0,

ΠNT

({
θ : d(θ, θ0) > ϵ

}) P0−→ 0 (36)

as N, T go to infinity, for d(·, ·) being dMS, dM and dH defined in (25) and (26).

Theorem 4 states that the quasi-posterior distribution concentrates on the true parameter
values, in terms of the average parameter estimation errors, the average misclassification
errors, and the Hausdorff distance metrics. Moreover, when the metrics considered are
cross-sectional averages (dMS and dM), we do not need to assume the knowledge of the true
group number. In fact, even when considering the convergence of the Hausdorff distance dH ,
correct knowledge of G is not a necessary condition. For example, when the diffuse prior (6)
is used with constraints on the minimal group size such as Assumption 4.G, the convergence
of dH is almost identical to the counterpart for dMS.

Next we would like to establish the posterior contraction rates of the quasi-Bayesian
posteriors. Next we apply Theorem 2 to study the posterior contraction rate of the distance
metrics in Theorem 4. Specifically,

Theorem 5. Under Assumption 4 and assume the knowledge of G, we have for ϵNT =

O(T−1)

ΠNT

({
θ : d(θ, θ0) > ϵNT

}) P0−→ 0 (37)

as N, T go to infinity, for d(·, ·) being dMS, dM and dH defined in (25) and (26).

Theorem 5 recovers the results in Su et al. (2016, Theorem 2.1). This is not surprising,
since my Assumption 4 is comparable to their Assumption A1.

4.2 GMM-type estimators

We now consider another popular class of loss functions, the generalized method of moments
(GMM) criterion. For completeness, we restate the GMM criterion as follows:

LNT (θ) =
1

N

N∑
i=1

(
1

T

T∑
t=1

m(wi,t; βγi)

)⊤

Ω̂i

(
1

T

T∑
t=1

m(wi,t; βγi)

)
. (38)
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Assumption 5 (GMM).

A. β0
g ∈ B for all g = 1, . . . , G0 where B is a convex compact subset of Rd.

B. For all i, {wi,t : 1 ⩽ t ⩽ T} is a strictly stationary α-mixing sequence of random vectors
with mixing coefficients ai(·) such that a(·) = maxi ai(·) satisfies a(τ) ⩽ cαρ

τ for some
cα > 0 and ρ ∈ (0, 1).

C. We have Em(wit; β
0
γ0i
) = 0 for some β0

γ0i
∈ int(B). Moreover, For any ϵ > 0, we have

mini inf∥β−β0
γ0
i

∥2>ϵ
∥∥Em(wit; βγi)

∥∥ > χ(ϵ) > 0.

D. There exists a non-negative function M(·) such that ∥m(wit; β)∥ ≤ M(wit) for all
β ∈ B, and ∥m(wit; β) − m(wit; β̃)∥ ≤ M(wit)∥β − β̃∥ for all β, β̃ ∈ B. Moreover,
supi E

∣∣M(wit)
∣∣q < cM for some cM <∞ and q ≥ 6.

E. There exists a deterministic sequence of symmetric positive definite matrices {Ω̂i}Ni=1

such that for any ν > 0 we have supi ∥Ω̂i − Ωi∥ = op(N
−1).

F. Assume that N2 = O(T q/2−1) where q ≥ 6 is the same constant in 5.D.

G. G0 is fixed and ming ̸=l∥β0
g − β0

l ∥ > 0 for all g, l ∈ {1, . . . , G0}.

H. For all g ∈ {1, . . . , G0}, limN→∞
1
N

∑N
i=1 1{γ0i = g} > η > 0.

Overall, Assumption 5 is similar to conditions in Fernández-Val and Lee (2013) and
Cheng et al. (2019). In fact, since the GMM objective function (38) is of similar form to the
M-estimation objection (34), the assumptions are also similar to the ones in the previous
section. The main difference is that in the identification assumption 5.C, the population loss
is zero, as required by the validity of moment conditions. Moreover, the weighting matrix
in 5.E also introduces an additional complication, as the uniform convergence rate generally
depends on the choice of weighting matrix.

With the above assumption, we have the following result.

Theorem 6 (Consistency). Under Assumption 5 and known G, we have for any ϵ > 0,

ΠNT

({
θ : d(θ, θ0) > ϵ

}) P0−→ 0 (39)

as N, T go to infinity, for d(·, ·) being dMS, dM and dH defined in (25) and (26).
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5 Simulation study

This section investigates the finite-sample performance of the quasi-Bayesian clustering
method. Section 5.1 describes the simulation design and Section 5.2 presents the simulation
results with fixed number of groups.

5.1 Simulation design

We consider first the class of linear panel data models.
DGP 1: Linear panel data model with homoskedastic errors. The data are generated
from the following linear panel data model:

yit = xitβ
0
γ0i

+ µ0
i + ϵit (40)

where the covariates xit ∈ R2 are generated from standard normal and µ0
i

i.i.d.∼ N(0, 1) are the
individual fixed effects. Group-level parameters are set to β0

1 = (0.4, 1.6)⊤, β0
2 = (1, 1)⊤, β0

3 =

(1.6, 0.4) when there are three groups (G = 3), and β0
1 = (0.4, 1.6)⊤, β0

2 = (1, 1)⊤ when there
are two groups (G = 2).
DGP 2: Linear panel data model with heterogeneous errors. The data are generated
from a linear panel data model as in (40), except that the error terms are heterogeneously
distributed (Patton and Weller, 2022). Specifically, for each unit i, eit is randomly drawn
from N(0, 1), Exp(2), Unif(−3, 3), χ2(4) and t(5) with equal probability, standardized to
have mean zero and unit variance.

In each of the designs, I simulate 10,000 MCMC draws with 1,000 burn-in for 300 repli-
cations. For the learning rate selection, I calibrate it with 100 bootstrapped samples.

5.2 Known number of groups

This section reports the results where the true number of groups is known a priori. In
particular, I set the prior π(G0|λ) = 1 and zero otherwise. As a benchmark, I also report the
results of k-means clustering following Bonhomme and Manresa (2015). For both methods,
I calculate the RMSE of the estimated group-level parameters, and compute the coverage
rates of confidence intervals.

Table 2-Table 3 report the results. Overall, the patterns are similar to the results in Sec-
tion 2, demonstrating that the quasi-Bayesian framework performs well in more complicated
setup.

Noticeably, the quasi-Bayesian confidence sets seem overly conservative in some cases.

32



This is because the posterior draws are subject to label switching problem (Stephens, 2000),
a well known issues in the class of mixture models. When the draws highly overlap, as is the
case when the data is noisy, deterministic post-processing algorithms may fail to correctly
re-label the group-level parameters. In this case, the posterior distributions of group-level
parameters are contaminated by outlier draws from other groups, thereby inflating the con-
fidence sets.

Table 2: Homoskedastic Design (G = 2)

Sample Size Metrics
σ2 = 1.0 σ2 = 2.0

QB KM QB KM

AC 86.77 87.81 61.23 71.24

N = 100, T = 10

BR 24.65 17.57 37.64 16.15
RMSE 16.89 12.37 52.90 47.01
Coverage 95.2 82.7 96.6 43.4
RMSE (AE) 3.32 3.37 6.51 6.74
Coverage (AE) 97.7 - 99.0 -

AC 95.92 96.01 73.95 81.34

N = 100, T = 20

BR 18.59 15.79 27.95 14.46
RMSE 9.89 6.80 31.55 22.60
Coverage 96.8 92.1 95.4 67.4
RMSE (AE) 2.24 2.25 4.69 4.72
Coverage (AE) 97.0 - 97.3 -

Note: Definition of the evaluating metrics is given by the footnote of Table 1.
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Table 3: Distributional Heteroskedasticity

Sample Size Metrics
G = 2 G = 3

QB KM QB KM

N = 100, T = 10

AC 87.06 88.55 80.19 83.55
BR 25.46 17.90 37.40 21.00
RMSE 16.71 12.71 31.02 21.84
Coverage 94.83 81.08 96.67 76.33
RMSE (AE) 3.36 3.42 3.34 3.43
Coverage (AE) 96.50 - 98.67 -

N = 100, T = 20

AC 95.90 95.98 94.28 94.50
BR 18.85 16.08 24.83 19.18
RMSE 10.37 7.27 16.30 11.05
Coverage 95.08 90.50 96.44 88.67
RMSE (AE) 2.32 2.33 2.32 2.32
Coverage (AE) 95.67 - 97.00 -

Note: Definition of the evaluating metrics is given by the footnote of Table 1.

5.3 Inference on the number of groups

The next exercise is to examine the performance of the quasi-Bayesian framework in de-
termining the number of groups. In particular, the quasi-Bayesian approach estimates the
number of groups by the posterior mode, while the k-means estimator estimates the number
of groups by the information criterion (Su et al., 2016). Figure 2 shows the results with
homoskedastic errors.

First, panel 2(a) shows the density of the selected group number across replications. Con-
sistent with the theoretical results in Section 4, the posterior mode of the quasi-Bayesian
approach tends to concentrate around the true number of groups. Moreover, on average it
is more accurate than the frequentist information criterion. To understand the superior per-
formance of the quais-Bayesian approach, panel 2(b) plots the quasi-posterior density of the
group number in a single replication, along with the group number selected by the k-means
algorithm (black line). As is clear, the frequentist information criterion fails to take into ac-
count the estimation uncertainty in the group number, whereas the quasi-Bayesian approach
correctly accounts for it, by assigning non-zero probability to multiple plausible values of the
group number. Overall, the simulation results highlight that encoding uncertainty in group
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number inference via the posterior, rather than selecting a single G, improves discovery of
the group patterns.

(a) Average Selection Probability (b) Selection on Single Run

Figure 2: Inference on Group Number

Note: The figure presents the posterior inference of the quasi-Bayesian procedure on the group
number, and compare its performance with k-means clustering estimator with the number of
groups selection by the information criterion (Su et al., 2016). Panel 2(a) shows the density of
the selected group number across 200 replications. Panel 2(b) shows the posterior density of
the quasi-Bayesian approach, along with the point estimate given by the k-means algorithm.
The black vertical line indicates the true number of groups.

6 Empirical study: heterogeneous income risks

Previous studies have found substantial heterogeneity in the cyclicality of household income
risk, with higher income households typically experiencing less cyclical income variation
(Guvenen et al., 2014; Patterson, 2023). However, these studies have relied on ad-hoc classi-
fications of households into groups based on observable characteristics. Although intuitive,
such approach suffers from the drawback that important heterogeneity may be missed or
incorrectly attributed to the assigned variable (Aguiar et al., 2020).

In this section, I apply the quasi-Bayesian approach to jointly estimate group-level income
risks over the business cycle and uncover the latent group structure, using biennial panel data
on households from the PSID between 1999-2009 (Arellano et al., 2017). In particular, we
are interested in recovering heterogeneity in income cyclicality across groups, and examine
household characteristics that help explain group membership. To do so, I estimate the
following linear panel data model in the spirit of Guvenen et al. (2014)

ln y
(r)
it = Ytβγi + ϵit (41)
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where ln y
(r)
it is the residualized log total income, Yt is the aggregate unemployment rate, and

βγi is the cyclicality of interest.
The quasi-Bayesian approach identifies three latent groups in the data, with the posterior

distribution of the group-level parameters shown in Figure 3. As we can see, the income
elasticity to unemployment rate is positive for Group 1, indicating that as unemployment
rate increases by 1%, household (total) income increases by one-third. In contrast, Group
3 experiences income losses of similar magnitude, and Group 2 is mildly affected by the
unemployment fluctuations.

(a) Group 1 (b) Group 2

(c) Group 3

Figure 3: Group Level Income Cyclicality

Note: The figure presents the group-level income cyclicality βγi defined in model (41).

To better understand the mechanisms behind the heterogeneous income cyclicality, I show
in Table 4 the average household characteristics by group. Consider first the demographic
characteristics. Contrary to conventional wisdom, the three groups are remarkably similar in
terms of age, education, and family size. Therefore, at least in the PSID sample, standard life-
cycle considerations (Catherine, 2022) or skill distributions (Braxton et al., 2021) do not seem
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to be the decisive factors behind heterogeneous income risks. Moreover, household income
and wealth are correlated with the group membership, corroborating the results in Guvenen
et al. (2014). As shown by the variation across rows, however, no single indicator such as total
family income is able to fully capture the group differences. For example, income alone does
not fully differentiate the groups. On one hand, Group 1 has the highest total family income
yet the lowest labor income, highlighting the importance of variations in income categories.
On the other hand, although Group 1 has the highest total family income, it also has the
lowest stock values, suggesting different roles of income and wealth. Group 3 provides another
example where indicators do not fully align. This group has the highest financial assets and
cash holdings, and so does not fit the “wealthy hand-to-mouth” characterization (Kaplan
et al., 2014). However, they are the most negatively affected by rising unemployment rates,
contradicting the existing findings (Patterson, 2023). Interestingly, Group 3 also has the
highest transfer income and pensions & annuities values, suggesting they are vulnerable to
recessions despite not being liquidity constrained. To summarize, the conventional dichotomy
of “rich” versus “poor”, or “constrained” versus “unconstrained” households, tends to obscure
the more nuanced differences in the latent group structure.13

Next, it is interesting to contrast the quasi-Bayesian clustering results with the k-means
clustering. Importantly, although Figure 5 in the appendix shows that both methods iden-
tify a similar number of groups, the underlying group structure greatly differs. The k-means
algorithm tends to partition units into balanced groups of roughly equal size. By contrast,
the quasi-Bayesian approach allows for relatively small group sizes and unbalanced parti-
tions. Such difference turns out to be important when we interpret the group assignment
with group-level characteristics. As Table B.2 shows, the demographic differences across
groups are less prominent in k-means clustering. Among the discernable differences, the
two clustering results do exhibit some broad agreements. For example, the Group 4 house-
holds in k-means clustering have the highest stocks of pension and annuities, and suffer
the most when unemployment rate increases, similar to Group 3 households discovered by
the quasi-Bayesian approach. However, the confidence intervals of the k-means clustering
are substantially narrower than those for the quasi-Bayesian approach. Given the extensive
simulation results in the previous sections, the validity of the k-means confidence intervals
is questionable. On the contrary, the quasi-Bayesian approach provides more realistic un-
certainty estimates for the heterogeneous income cyclicality.

13Figure 4 in the appendix provides a graphical illustration. When total assets and labor income are
considered in isolation, the resulting group partitions appear unrelated to these indicators. However, the full
analysis shows these factors do play a role in differentiating the groups.
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Table 4: Household characteristics by group (quasi-Bayes)

Group 1 Group 2 Group 3
Age 45 45 45
Education 14 14 14
Family Size 4 3 4
Total Family Income 145120 117048 129835
Taxable Income (Head and Wife) 138145 110208 121237
Transfer Income (Head and Wife) 884 2565 3607
Labor Income (Head) 45069 73857 80745
Labor Income (Wife) 35480 29137 29559
Hours Worked (Head) 2253 2247 2170
Hours Worked (Wife) 1425 1443 1042
House Value 244989 245389 309352
Stocks Value 9564 46405 99193
Pensions & Annuities 46000 46016 87341
Cash 27291 27924 49622
Bonds 12545 15270 22379
Other Debt 7608 7324 6063
Financial Assets 228621 161973 280191
Total Assets 575585 318244 488282
Nondurable Consumption 9258 8602 8331
Services Consumption 35072 33233 35793
Total Consumption 40394 38204 40268
Count 15 713 34
βg (%) 29.77 -2.97 -35.81
CS(βg) (%) [17.19,43.72] [-6.53,-1.76] [-49.73,-29.27]

Note: This table reports the group-level averages of household characteristics. The last two rows
report the group-level coefficients (posterior mode), and the 95% confidence sets constructed by
2.5% and 97.5% quantiles of the MCMC draws, expressed in percentage terms.

In conclusion, the quasi-Bayesian approach provides a more nuanced and flexible clus-
tering of households compared to pre-defined grouping criteria. For example, it reveals the
nuanced interactions between sub-categories of income, as well as the differences between
income and wealth, in determining the group structure. Importantly, it recovers subgroup
heterogeneity missed by k-means, as the latter tends to produce a balanced group struc-
ture of similar sizes, which masks across-group differences and thus impedes interpretation.

38



Further, quasi-Bayesian clustering also has methodological advantages, as evidenced by its
realistic uncertainty estimates. While no grouping can capture all household heterogene-
ity, the results showcase the value of the quasi-Bayesian approach in discovering subgroup
patterns. Further investigation of additional covariate relationships with the subgroup as-
signments could yield further economic insights into cross-sectional differences in household
income dynamics.

7 Discussion

This paper develops a general quasi-Bayesian framework for grouped panels where economic
agents are partitioned into latent groups such that the parameters of interest are distinct
across groups but common within groups. By jointly modeling the latent group structure
and the grouped parameters, the proposed framework accounts for potential propagation of
estimation errors and thus significantly improves estimation accuracy and coverage relative
to existing methods. Importantly, the framework is general enough to encompass a large
class of popular estimators and priors, thereby facilitating straightforward adaptation for
applied researchers.

Several promising extensions of this work can be explored. First, the current paper
focuses on consistency and posterior contraction of the quasi-Bayesian approach. An impor-
tant extension would involve deriving distributional results such as the Bernsteinvon Mises
theorem as in Chernozhukov and Hong (2003). Second, the bootstrap-based learning rate
selection is computationally intensive. It would be interesting to extend alternative learning
rate calibration methods such as (Fasiolo et al., 2021) to the current framework. More-
over, the bootstrap learning rate selection has close connections with algorithmic stability
(Zrnic and Jordan, 2023), and thus exploring the implications of using Bayesian methods
in post-selection inference through the lens of stability is an interesting direction for future
work.
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A Posterior Sampling

This section discusses issues in posterior analysis.

A.1 Label switching

When the mixture-of-finite-mixture (MFM) prior is used, the quasi-posterior distribution
suffers from the well known “label switching” problem, due to the fact that the posterior (12)
is invariant to arbitrary permutations of the group labels.14 In particular, this causes two
issues. First, the MCMC convergence of Algorithm 2 can be slow. This is because the
posterior density is by construction multi-modal, and thus the MCMC sampler may fail
to explore the parameter space (Jasra et al., 2005). Second, when the MCMC sampler
successfully visits all posterior modes, the posterior samples can not be used directly for
inference on group-level parameters. This is because the labels in each iteration can be
different (Papastamoulis and Iliopoulos, 2010). The two issues together call for a method to
first enforce switching of labels so as to improve MCMC convergence, and second undo the
label switching so as to facilitate posterior inference. Next I discuss the two issues in turn.

First, to improve MCMC convergence, I augment Algorithm 1 with a random label
switching step as in Norets (2021). Specifically, in each iteration m, I randomly select two
groups k, l ∈

{
1, . . . , G(j)

}
and switch the labels of the two groups, i.e., γ(j)i ← l if γ(j)i = k,

and γ
(j)
i ← k if γ(j)i = l.

Second, to undo the label switching, I follow Marin et al. (2005) to relabel the MCMC
output. Specifically, I first select the maximum a posteriori (MAP) estimate based on the
MCMC output as the pivot. Then for each MCMC draw, I permute the partitions so as to
minimize the distance with respect to the pivotal parameters.15

As an illustration, Table A.1 presents the MCMC diagnostics results for the quasi-
Bayesian approach under homoskedastic simulation design. As the table shows, the uniform
label switching (Norets, 2021) significantly improves the effective sample size (ESS).

14For systematic review of the problem, see Frühwirth-Schnatter (2006).
15Alternative methods can be used, e.g., (Stephens, 2000) and Papastamoulis and Iliopoulos (2010). How-

ever, simulation results show that these alternatives are substantially slower while the improvement in terms
of RMSE is limited.
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With Uniform Label Switching
parameters mean std mcse ess_bulk ess_tail rhat

β1(G1) 0.8386 0.4948 0.0073 1810.9606 1398.2787 0.9999
β2(G1) 0.9540 0.5446 0.0082 3022.6556 2988.7424 1.0004
β1(G2) 0.8358 0.4949 0.0075 1991.6056 1437.6703 0.9999
β2(G2) 0.9474 0.5399 0.0081 3419.3273 3136.6249 0.9999
β1(G3) 0.8281 0.4923 0.0075 2111.8656 1689.8951 1.0005
β2(G3) 0.9685 0.5498 0.0080 3912.0066 3189.3999 1.0001

Without Label Switching
parameters mean std mcse ess_bulk ess_tail rhat

β1(G1) 0.5302 0.0510 0.0011 2306.7401 3879.9385 1.0000
β2(G1) 1.7061 0.0665 0.0023 858.7201 1521.8845 1.0002
β1(G2) 1.5089 0.0624 0.0025 652.8397 1554.5412 1.0011
β2(G2) 0.5655 0.0627 0.0026 607.7379 908.0364 1.0008
β1(G3) 0.4301 0.1554 0.0081 373.3776 1022.4364 1.0008
β2(G3) 0.5729 0.1471 0.0079 356.9726 339.3024 1.0032

Table A.1: MCMC Convergence Diagnostics: Label Switching
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B Additional empirical results

This section collects additional results for the empirical application.

Figure 4: Group characteristics: Assets vs. Labor Income

Note: The figure presents the scatter plot of household total assets and total consumption by
identified group. Following definitions in Arellano et al. (2017), total assets are defined by the
sum of financial assets, housing values, real estate values, and car values, minus outstanding
mortgages. Both variables are transformed in log form.
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Figure 5: Group Selection
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Table B.2: Household characteristics by group (K-means)

Group 1 Group 2 Group 3 Group 4
Age 44 44 46 44
Education 14 14 14 14
Family Size 3 4 3 3
Total Family Income 123686 123952 110708 125468
Taxable Income (Head and Wife) 117266 118364 103557 116534
Transfer Income (Head and Wife) 2459 2034 2154 5171
Labor Income (Head) 80504 70918 67832 80701
Labor Income (Wife) 30351 27705 29670 26825
Hours Worked (Head) 2263 2191 2245 2246
Hours Worked (Wife) 1444 1431 1474 1179
House Value 254970 233456 242061 271904
Stocks Value 55928 47058 35643 75864
Pensions & Annuities 40637 44122 49785 63978
Cash 28568 32506 26542 34103
Bonds 19086 12487 13222 18781
Other Debt 7036 9284 7007 6564
Financial Assets 190936 182624 138470 208521
Total Assets 351140 360056 298291 368299
Nondurable Consumption 8510 8629 8648 8645
Services Consumption 33519 33076 32825 35533
Total Consumption 38335 38148 37878 40352
Count 232 104 338 88
βg (%) -14.95 25.82 1.35 -39.38
CS(βg) (%) [-15.67,-14.23] [23.86,27.78] [0.77,1.93] [-41.44,-37.31]

54



C Proofs

C.1 List of lemmas

Lemma 1 (Risk Bound). Under Assumption 2, we have

E0ΠNT ({θ : LN(θ)− LN(θ0) > 5δNT}) ≤P0

(
sup
θ∈Θ

∣∣LNT (θ)− LN(θ)∣∣ > δNT

)
+

exp [−2NTψδNT ]
Π ({θ : LN(θ)− LN(θ0) < δNT})

. (42)

Lemma 2 (Uniform Convergence - M-estimation). Under Assumption 4.A, 4.B, 4.C, 4.D,
and 4.E, for any ϵ > 0, we have as N, T →∞,

P0

(
max
i

sup
β∈B

∣∣∣∣ 1T
T∑
t=1

h(wit; β)− Eh(wit; β)
∣∣∣∣ ≥ ϵ

)
= o(N−1) . (43)

Lemma 3 (Uniform Convergence - GMM). Under Assumption 5.A, 5.B, 5.C, 5.D, 5.E,
and 5.F, for any ϵ > 0, we have as N, T →∞,

sup
θ∈Θ

∣∣LNT (θ)− LN(θ)∣∣ = op(N
−1) . (44)

Lemma 4 (Prior Concentration - Mixture of Finite Mixture). Let Π(γ) be the prior distri-
bution of γ defined in (6). Then for arbitrarily small ϵ > 0, we have (up to permutation of
the group labels)

Π
(
γ = γ0

)
≥ exp

[
−CN lnG0

]
(45)

where C > 0 is some finite constant.

Lemma 5 (Anderson’s Lemma). Suppose β ∼ N(0,Σ) where Σ is a d× d positive definite
matrix, and β0 ∈ Rd. Then for any ϵ > 0, we have

P
(
∥β − β0∥ ≤ ϵ

)
≥ exp

[
−1

2
β0⊤Σ−1β0

]
P (∥β∥ ≤ ϵ) . (46)

Lemma 6 (Prior mass condition). Under the prior combination of (6), the prior mass con-
dition 2.D holds with cNT (ϵ) = exp [−C(N lnG0 + | ln ϵ|)], for the average distance dMS(θ, θ̃)

and the Hausdorff distance dH(θ, θ̃). That is,

Π({θ : dMS(θ, θ
0) ≤ ϵ}) ≥ exp [−C(N lnG0 + | ln ϵ|)]

Π ({θ : dH(θ, θ0) ≤ ϵ}) ≥ exp [−C(N lnG0 + | ln ϵ|)]
(47)
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Remark 1. Lemma 1 is the Proposition 6 in Jiang and Tanner (2008). Lemma 2 follows
from Lemma S1.2 in Su et al. (2016). Lemma 4 is often referred to as the “prior concentra-
tion” result. Similar results are obtained (or directly assumed) in the community detection
literature (e.g., Ghosh et al., 2020; Jiang and Tokdar, 2021). Lemma 5 is Lemma 5.2 in van
der Vaart and van Zanten (2008).
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C.2 Proofs of general results

Proof. (of Theorem 1) For notational simplicity, denote the event Aϵ = {θ : d(θ, θ0) ≤ ϵ}.
Notice that the posterior distribution can be written as

ΠNT (A
c
ϵ) =

∫
1 {Acϵ} exp [−NTψLNT (θ)] Π(dθ)∫

exp [−NTψLNT (θ)] Π(dθ)

=

∫
1 {Acϵ} exp [−NTψ(LNT (θ)− LN(θ))] Π(dθ)∫

exp [−NTψ(LNT (θ)− LN(θ))] Π(dθ)
(48)

Therefore, we would like to derive an upper bound for the numerator and a lower bound for
the denominator. Consider first the numerator, we can decompose the integrand as

exp [−NTψ (LNT (θ)− LN(θ))] 1 {Acϵ} exp

−NTψ (LN(θ)− LN(θ0))︸ ︷︷ ︸
>0


≤ exp

[
NTψ sup

θ∈Θ

∣∣LNT (θ)− LN(θ)∣∣] exp [−NTψ inf
Ac

ϵ

(
LN(θ)− LN(θ0)

)]
≤ exp

[
NTψ

(
sup
θ∈Θ

∣∣LNT (θ)− LN(θ)∣∣− χ̃(ϵ))] (49)

where the last inequality comes from the identification condition 1.A.
For the denominator, we have∫

exp
[
−NTψ(LNT (θ)− LN(θ) + LN(θ)− LN(θ0))

]
Π(dθ)

≥
∫

exp

[
−NTψ sup

θ∈Θ

∣∣LNT (θ)− LN(θ)∣∣] exp [−NTψ(LN(θ)− LN(θ0))]Π(dθ)
≥ exp

[
−NTψ sup

θ∈Θ

∣∣LNT (θ)− LN(θ)∣∣] ∫ exp
[
−NTψ(LN(θ)− LN(θ0))

]
Π(dθ) (50)

where we use the fact that supθ∈Θ
∣∣LNT (θ)−LN(θ)∣∣ does not depend on θ. To further bound

the right hand side, note that∫
exp

[
−NTψ(LN(θ)− LN(θ0))

]
Π(dθ)

≥
∫

1
{
LN(θ)− LN(θ0) ≤ δ

}
exp

[
−NTψ(LN(θ)− LN(θ0))

]
Π(dθ)

≥
∫

1
{
LN(θ)− LN(θ0) ≤ δ

}
exp [−NTψδ] Π(dθ)

= exp [−NTψδ] Π
({
θ : LN(θ)− LN(θ0) ≤ δ

})
≥ exp [−NTψδ] c̃NT (δ) (51)
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where we use the prior mass condition 1.C. Therefore, the denominator is lower bounded by

exp

[
−NTψ

(
sup
θ∈Θ

∣∣LNT (θ)− LN(θ)∣∣+ δ

)]
c̃NT (δ) . (52)

Combined with the upper bound for the numerator, we have

ΠNT (A
c
ϵ) ≤

exp
[
−NTψ

(
χ̃(ϵ)− 2 supθ∈Θ

∣∣LNT (θ)− LN(θ)∣∣− δ)]
c̃NT (δ)

≤exp [−NTψ (χ̃(ϵ)− o(1)− δ)]
c̃NT (δ)

(53)

where we use the uniform convergence condition 1.B.
■

Proof. (Posterior contraction rate in Theorem 2)
To start with, notice that by Assumption 2.A, and Lemma 1, we have

E0ΠNT

({
θ : d(θ, θ0) ≥ ϵNT

})
≤E0Π

({
θ : LN(θ)− LN(θ0) ≥ a(ϵNT )

})
≤P0

(
sup
θ∈Θ

∣∣LNT (θ)− LN(θ)∣∣ ≥ 1

5
a(ϵNT )

)
+

exp
[
−2

5
NTψa(ϵNT )

]
Π
({
θ : LN(θ)− LN(θ0) < 1

5
a(ϵNT )

}) (54)

By the uniform convergence condition 2.B, the first term is upper bounded by bNT . For
the second term, notice that by the smoothness condition 2.C, we have

LN(θ)− LN(θ0) ≤ c̃Md(θ, θ
0) (55)

and thus {
d(θ, θ0) ≤ c̃−1

M

1

5
a(ϵNT )

}
=⇒

{
LN(θ)− LN(θ0) ≤

1

5
a(ϵNT )

}
(56)

and thus by the prior mass condition 2.D, we have

Π

({
θ : LN(θ)− LN(θ0) <

1

5
a(ϵNT )

})
≥Π

({
d(θ, θ0) ≤ a(ϵNT )

5c̃M

})
≥ cNT (

a(ϵNT )

5c̃M
) . (57)

Therefore, we have

E0ΠNT

({
θ : d(θ, θ0) ≥ ϵNT

})
≤ bNT +

exp
[
−2

5
NTψa(ϵNT )

]
cNT (a(ϵNT )/5c̃M)

. (58)
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■

Proof. (Posterior ratio consistency in Theorem 3)
By definition, the quasi-marginal posterior distribution is

πNT (G) =
π(W|G)π(G)

π(W)
=

∫
exp [−NTψLNT (θG)] π(βG)π(γG)dβGdγGπ(G)

π(W)

where with a slight abuse of notation, θG = (βG,γG), π(βG) is the prior density of βG =

(β1, . . . , βG) and π(γG) is the prior density of γG such that there are G groups in total. W
represents the entire data set, and π(W) is the marginal density of the data. Written more
compactly, we have

πNT (G)

πNT (G0)
=

π(G)

π(G0)

∫
exp [−NTψLNT (θG)] Π(dθG)∫
exp [−NTψLNT (θG0)] Π(dθG0)

(59)

and we are now back to the setup for proving Theorem 1.
Consider the ratio of marginal density, we have∫

exp [−NTψLNT (θG)] Π(dθG)∫
exp [−NTψLNT (θG0)] Π(dθG0)

=

∫
exp [−NTψ(LNT (θG)− LN(θG) + LN(θG)− LN(θ0))] Π(dθG)∫

exp [−NTψ(LNT (θG0)− LN(θG0) + LN(θG0)− LN(θ0))] Π(dθG0)

≤ exp

[
2NTψ sup

θ∈Θ

∣∣LNT (θ)− LN(θ)∣∣]
×
∫
exp [−NTψ(LN(θG)− LN(θ0))] Π(dθG)∫
exp [−NTψ(LN(θG0)− LN(θ0))] Π(dθG0)

(60)

Whenever G ̸= G0, denote by σ(γG) a permutation of γG, we have

LN(θG)− LN(θ0) =
1

N

N∑
i=1

E
[
liT (βγi)− liT (β0

γ0i
)
]

≥minσ {σ(γ)i ̸= γ0i }
N

E
[
liT (βσ(γ)i)− liT (β0

γ0i
)
]

≥cχ̌(ϵ) > 0 (61)

for some 0 < c < 1 and ϵ > 0. Here, we use (1) the identification condition 3.D, (2) the
separability condition 3.C, and (3) the group size condition 3.B. Specifically, by group size
condition, minσ {σ(γ)i ̸= γ0i } = O(N) and thus 0 < c < 1; by the separability condition,
for those misclassified groups, we have ∥βγi − β0

γ0i
∥ > ϵ for some ϵ > 0; and finally by the
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identification condition, the loss difference is lower bounded by χ̌(ϵ) > 0.
Then following the proof of Theorem 1, the posterior ratio is upper bounded by

exp [−NTψ (cχ̌(ϵ)− o(1)− δ)]
c̃NT (δ)

.

■
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C.3 Proof for M-estimation

The proof of of Theorem 4 is separated in three parts:

Proof. (Theorem 4, mean square convergence)
We would like to verify the three conditions of Theorem 1 under Assumption 4.

Identification. The identification condition 1.A follows directly from the Assumption 4.C.
Specifically, we would like to show that{

1

N

N∑
i=1

∥βγi − β0
γ0i
∥2 ≥ ϵ

}
=⇒

{
1

N

N∑
i=1

[
1

T

T∑
t=1

E
[
h(wit; βγi)− h(wit; β0

γ0i
)
]]
≥ χ(ϵ)

}
.

(62)
To this extent, assume that 1

N

∑N
i=1 ∥βγi − β0

γ0i
∥2 ≥ ϵ. Let 1 > τ > 0 and denote C̃ =

{i : ∥βγi − β0
γ0i
∥2 ≥ τϵ} the set of units with “large” parameter estimation errors. Then by

construction,

Nϵ ≤
N∑
i=1

∥βγi − β0
γ0i
∥2 =

∑
i∈C̃

∥βγi − β0
γ0i
∥2 +

∑
i/∈C̃

∥βγi − β0
γ0i
∥2

≤
∣∣C̃∣∣diam(B)2 + (N −

∣∣C̃∣∣)τϵ . (63)

Rearrange terms, we have ∣∣C̃∣∣ ≥ N(1− τ)ϵ
diam(B)2 − τϵ

(64)

and thus

1

N

N∑
i=1

[
1

T

T∑
t=1

E
[
h(wit; βγi)− h(wit; β0

γ0i
)
]]

≥ 1

N

∑
i∈C̃

[
1

T

T∑
t=1

E
[
h(wit; βγi)− h(wit; β0

γ0i
)
]]

≥ 1

N

∑
i∈C̃

min
i

inf
∥β−β0

γ0
i

∥2≥τϵ

[
1

T

T∑
t=1

E
[
h(wit; βγi)− h(wit; β0

γ0i
)
]]

≥ 1

N

∑
i∈C̃

χ(τϵ) =

∣∣C̃∣∣
N
χ(τϵ) ≥ (1− τ)ϵ

diam(B)2 − τϵ
χ(τϵ) . (65)

Therefore, Condition 1.A holds with

χ̃(ϵ) =
(1− τ)ϵ

diam(B)2 − τϵ
χ(τϵ) (66)
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for χ(·) defined in Assumption 4.C and some τ ∈ (0, 1).

Uniform convergence. The uniform convergence condition 1.A follows directly from
Lemma 2. Specifically, since

P0

{
1

N

N∑
i=1

(
1

T

T∑
t=1

h(wit; βγi)− Eh(wit; βγi)

)
> ϵ

}

≤P0

{
max
i

sup
β∈B

1

T

T∑
t=1

h(wit; βγi)− Eh(wit; βγi) > ϵ

}
= o(

1

N
). (67)

Therefore 1.B holds with supθ∈Θ
∣∣LNT (θ)− LN(θ)∣∣ = o( 1

N
) = o(1).

Prior mass condition. Condition 1.C holds by Lemma 6. Specifically, we use the smooth-
ness condition 4.D to translate the prior mass in Lemma 6 into the prior mass on the distance
metrics. To do so, notice that

|LN(θ)− LN(θ0)| =
∣∣ 1
N

∑N
i=1 E

[
h(wit, βγi)− h(wit; β0

γ0i
)
] ∣∣

≤ 1
N

∑N
i=1 E|h(wit, βγi)− h(wit; β0

γ0i
)|

≤ 1
N

∑N
i=1 E

[
M(wit)

∥∥βγi − β0
γ0i

∥∥]
= 1

N

∑N
i=1

∥∥βγi − β0
γ0i

∥∥EM(wit)

≤ 1
N

∑N
i=1

∥∥βγi − β0
γ0i

∥∥ supi EM(wit)

≤ 1
N

∑N
i=1

∥∥βγi − β0
γ0i

∥∥c1/qM

≤
√

1
N

∑N
i=1

∥∥βγi − β0
γ0i

∥∥2c1/qM

(68)

where the first inequality comes from the triangle inequality; the second from Assump-
tion 4.D; the third follows from the assumption that M(wit) is non-negative; the second last
inequality follows from the moment bounds in Assumption 4.D, and the monotonicity of mo-
ments, i.e., [E (|X|r)]1/r ≤ [E (|X|s)]1/s for 1 < r ≤ s; and finally, the last inequality follows
from Cauchy-Schwarz inequality, i.e.,

(∑N
i=1 ∥xi∥

)2
≤ N

(∑N
i=1 ∥xi∥2

)
for any xi ∈ Rd.

Therefore, we have for any δ > 0,{
1

N

N∑
i=1

∥∥βγi − β0
γ0i

∥∥2 ≤ δ2c
−2/q
M

}
=⇒ {|LN(θ)− LN(θ0)| ≤ δ} . (69)

This implies that

Π({θ : LN(θ)− LN(θ0) ≤ δ})

=Π
(
{θ : LN(θ)− LN(θ0) ≤ δ}

∣∣C = C0)Π (C = C0)
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≥Π

({
θ :

1

N

N∑
i=1

∥∥βγi − β0
γ0i

∥∥2 ≤ δ2c
−2/q
M

}∣∣C = C0)Π
(
C = C0

)
≥ exp

[
−C(N lnG0 +

∣∣ ln δ2c−2/q
M

∣∣)] (70)

where the first inequality comes from (69) and the last inequality comes from Lemma 6.
Therefore, Condition 1.C holds with

c̃NT (δ) = exp
[
−C(N lnG0 +

∣∣ ln δ2c−2/q
M

∣∣)] . (71)

Taken together. Now combining the above results, we have for any ϵ > 0,

E0ΠNT

({
θ :

1

N

N∑
i=1

∥βγi − β0
γ0i
∥ > ϵ

})

≤ exp

−NTψ
 (1− τ)ϵ
diam(B)2 − τϵ

χ(τϵ)− o(1)− δ −
C
(
N lnG0 +

∣∣ ln δ2c−2/q
M

∣∣)
NTψ

 . (72)

It remains to show that the right hand side converges to zero as N, T go to infinity. To do
so is equivalent to showing that

(1− τ)ϵ
diam(B)2 − τϵ

χ(τϵ)− o(1)− δ −
C
(
N lnG0 +

∣∣ ln δ2c−2/q
M

∣∣)
NTψ

> 0 . (73)

Notice that for any given ϵ > 0, the first term above is O(1). Therefore, there exists some
constant C̃ ≈ 1 such that

(1− τ)ϵ
diam(B)2 − τϵ

χ(τϵ)− o(1) ≥ C̃
(1− τ)ϵ

diam(B)2 − τϵ
χ(τϵ) . (74)

Moreover, δ > 0 can be arbitrarily positive number, and thus without loss of generality we
can select

δ =
1

2
C̃

(1− τ)ϵ
diam(B)2 − τϵ

χ(τϵ) (75)

and thus the sum of the first three terms remains O(1). Finally, notice that CN lnG0

NTψ
=

O( 1
T
) = o(1) for any given ψ. Moreover, for any ϵ > 0 and δ chosen above, we have∣∣ ln δ2c−2/q
M

∣∣ = O(1), where we use the finite moment assumption 4.D so that c−2/q
M < ∞,

rendering the last term O( 1
NT

).
To sum up, (73) is dominated by the first term, which is O(1) for any positive ϵ >

0. Therefore, the right hand side converges to zero as N, T → ∞, and thus the average
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consistency result holds.
■

Proof. (Theorem 4, average misclassification errors dM(θ, θ0))
As in the previous proof, we proceed by verifying the conditions in Theorem 1.

Identification. We have

1

N

N∑
i=1

[
1

T

T∑
t=1

E
[
h(wit; βγi)− h(wit; β0

γ0i
)
]]

≥ 1

N

N∑
i=1

1
{
γi ̸= γ0i

}[ 1
T

T∑
t=1

E
[
h(wit; βγi)− h(wit; β0

γ0i
)
]]

≥ 1

N

N∑
i=1

1
{
γi ̸= γ0i

}
min

i : γi ̸=γ0i
inf

∥β−β0
γ0
i

∥≥δ1

[
1

T

T∑
t=1

E
[
h(wit; βγi)− h(wit; β0

γ0i
)
]]

≥ 1

N

N∑
i=1

1
{
γi ̸= γ0i

}
χ(δ1) ≥ ϵχ(δ1) (76)

when we have
{

1
N

∑N
i=1 1 {γi ̸= γ0i } ≥ ϵ

}
.

Uniform convergence. The uniform convergence does not depend on the specific metric
d(θ, θ0) and thus follows directly from Lemma 2.

Prior mass condition. Having established the convergence of dMS(·, ·), we can simply
apply the same bounds from the previous part:

Π({θ : LN(θ)− LN(θ0) ≤ δ}) ≥ exp
[
−C(N lnG0 +

∣∣ ln δc−1/q
M

∣∣)] (77)

Notice that the above bound is valid regardless of the metric used.
Taken together, we have

E0Π

({
θ :

1

N

N∑
i=1

1
{
γi ̸= γ0i

}
> ϵ

})

≤ exp

−NTψ
ϵχ(δ1)− o(1)− δ − C

(
N lnG0 +

∣∣ ln δc−1/q
M

∣∣)
NTψ

 . (78)

Then for any given ϵ > 0, the right hand side converges to zero as N, T →∞, and thus the
average consistency result holds. ■

Proof. (Theorem 4, Hausdorff distance dH(θ, θ0))
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As before, we proceed by verifying the conditions in Theorem 1.
Identification. We would like to show that

{
θ : dH(θ, θ

0) ≥ ϵ
}

=⇒
{
θ : LN(θ)− LN(θ0) ≥ χ(ϵ)

}
(79)

for some function χ(·). The complication comes from the fact that the Hausdorff distance is
defined as the maximum of two sub-metrics:

dH(θ, θ
0) = max

{
max

k∈{1,...,G0}
min

l∈{1,...,G}
∥βl − β0

k∥, max
l∈{1,...,G}

min
k∈1,...,G0

∥βl − β0
k∥
}
. (80)

Therefore, although it is easy to show that LN(θ)−LN(θ0) is lower bounded by some function
of the first component, the bound does not depend on the Hausdorff distance itself.

As a workaround, we introduce an intermediate step:

{θ : dH(θ, θ0) > ϵ} =⇒ {θ : dMS(θ, θ
0) > f(ϵ)} (81)

where f(ϵ) is some function of ϵ. Notice that once the above is proved, the result follows
directly from the consistency of the average parameter estimation.

Consider the fisrt case. From (133) (in the proof of Lemma 6), we have

min
l∈{1,...,G}

∥βl − β0
k∥ ≤ ∥βγi − β0

k∥ =
1

N0
k

N∑
i=1

1{γ0i = k}∥βγi − β0
γ0i
∥ ≤ 1

N0
k

N∑
i=1

∥βγi − β0
γ0i
∥ (82)

Taking maximum over k ∈ {1, . . . , G} leads to

{
max

k∈{1,...,G}
min

l∈{1,...,G}
∥βl − β0

k∥ > ϵ

}
=⇒

{
1

N

N∑
i=1

∥βγi − β0
γ0i
∥ ≥ ϵ

C

}
(83)

for some finite constant C.
Next we start from the average errors

1

N

N∑
i=1

∥∥βγi − β0
γ0i

∥∥ =
1

N

G∑
g=1

∑
i∈Cg

∥∥βg − β0
γ0i

∥∥ ≥ 1

N

G∑
g=1

∑
i∈Cg

min
k∈{1,...,G}

∥∥βg − β0
k

∥∥
≥ 1

N
max

g∈{1,...,G}

(
Ng min

k∈{1,...,G}

∥∥βg − β0
k

∥∥) (84)

where the first inequality comes from the definition of mink and the second from the fact that∑
i ai ≥ maxi ai as long as ai ≥ 0 for all i. This last expression illustrates why if we allow

varying number of groups, it is difficult to establish consistency even at the group-level. For
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example, in the extreme case when we allow for micro-clustering, the right hand side reduces
to 1

N
maxgmink

∥∥βg − β0
k

∥∥, which is of order O( 1
N
)! In this case the analysis of Hausdorff

distance coincide with the supremum error rates, which are well known to be slow.
There are two remedies available. First, we can rule out micro-clustering by assumption.

For example, we can impose minimal group size constraint in the diffuse prior (6). Second,
we may assume that the true number of groups is known. In this case we have

max
g∈{1,...,G}

(
Ng min

k∈{1,...,G}

∥∥βg − β0
k

∥∥) ≳ min
g
Ng max

g∈{1,...,G}
min

k∈{1,...,G}

∥∥βg − β0
k

∥∥ . (85)

As a result, (81) holds with f(ϵ) a linear transformation of ϵ.

Uniform convergence. The uniform convergence does not depend on the specific metric
d(θ, θ0) and thus follows directly from Lemma 2.

Prior mass condition. Following the previous proof, it suffices to show that the loss func-
tion is upper bounded by the Hausdorff distance (scaled by some finite number). Specifically,
we have

|LN(θ)− LN(θ0)| =
∣∣ 1
N

∑N
i=1 E

[
h(wit, βγi)− h(wit; β0

γ0i
)
] ∣∣

≤ 1
N

∑N
i=1 E|h(wit, βγi)− h(wit; β0

γ0i
)|

= 1
N

∑N
i=1 E|h(wit, βγi)−minβ∈B h(wit; β)|

≤ 1
N

∑N
i=1 minβ∈B E|h(wit, βγi)− h(wit; β)|

≤ 1
N

∑N
i=1 maxβ̃∈B minβ∈B E|h(wit, β̃(β))− h(wit; β)|

≤ 1
N

∑N
i=1 maxβ̃∈B minβ∈B E

[
M(wit)

∥∥β̃(β)− β∥∥]
≤ maxβ̃∈B minβ∈B

∥∥β̃(β)− β∥∥( 1
N

∑N
i=1 EM(wit)

)
≤ dH(θ, θ

0) supi EM(wit)

≤ dH(θ, θ
0)c

1/q
M

(86)

Here, the first inequality comes from the triangle inequality; the second equality follows
from the definition of β0

γ0i
, which uniquely minimizes the population loss function for each

individual (Assumption 4.C); the third inequality follows from Jensen’s inequality (to the
minimum operator); the third last inequality follows by the definition of Hausdorff distance;
and the remaining ones are from the smoothness condition 4.D. Therefore, we have for any
δ > 0, {

dH(θ, θ
0) ≤ δc

−1/q
M

}
=⇒ {|LN(θ)− LN(θ0)| ≤ δ} . (87)

and thus the prior mass condition follows, with c̃NT (δ) = exp
[
−C(N lnG0 +

∣∣ ln δc−1/q
M

∣∣)],
the remainder of the proof is similar to the one for mean square convergence and thus is
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omitted. ■

Proof. (of Theorem 5)
To prove the result, we only need to find a(ϵNT ), bNT , c(·) and cM .

First, by equation (66), we have

{
θ : dMS(θ, θ

0) ≥ ϵNT
}

=⇒
{
θ : LN(θ)− LN(θ0) ≥

(1− τ)ϵNT
diam(B)2 − τϵNT

χ(τϵNT )

}
(88)

for arbitrarily τ ∈ (0, 1). Therefore, a(ϵNT ) = (1−τ)ϵNT

diam(B)2−τϵNT
χ(τϵNT ).

Second, Lemma 6 gives c(·):

Π
({
dMS(θ, θ

0) ≤ ϵNT
})
≥ exp

[
−C

(
N lnG0 +

∣∣ ln ϵNT ∣∣)] (89)

Third, by (69) we have

{
dMS(θ, θ

0) ≤ ϵNT
}

=⇒
{
LN(θ)− LN(θ0) ≤ c

1/q
M

√
ϵNT

}
(90)

where cM is given by Assumption 4.D.
Taken together, we have

E0ΠNT

({
θ :

1

N

N∑
i=1

∥βγi − β0
γ0i
∥ ≥ ϵNT

})

≤P0

(
sup
θ∈Θ

∣∣LNT (θ)− LN(θ)∣∣ ≥ 1

5
a(ϵNT )

)
+ exp

[
CN lnG0 + C ln

∣∣c1/qM a(ϵNT )
∣∣− 2

5
NTψa(ϵNT )

]
(91)

It remains to show the fastest possible convergence rate of ϵNT . First notice that
ln
∣∣c1/qM a(ϵNT )

∣∣ is dominated in the second term, and thus we can focus only on CN lnG0 and
−2

5
NTψa(ϵNT ). In this case, the second term converges to zero as long as a(ϵNT ) = C̃T−1 for

some sufficiently large C̃ > 0. Moreover, such condition also render bNT = o(1), as implied
by Lemma 2. Therefore, the fastest possible convergence rate of ϵNT is T−1.

The result for the average misclassification errors can be simiarly found. In particular,
now we have a(ϵNT ) = ϵNTχ(δ1) for some (fixed but) small δ1 > 0. Moreover, it shares the
same c(·) and cM as the average estimation errors, which gives

E0ΠNT

({
θ :

1

N

N∑
i=1

1
{
γi ̸= γ0i

}
≥ ϵNT

})
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≤P0

(
sup
θ∈Θ

∣∣LNT (θ)− LN(θ)∣∣ ≥ ϵNTχ(δ1)

)
+ exp

[
CN lnG0 + C ln

∣∣c1/qM ϵNTχ(δ1)
∣∣− 2

5
NTψϵNTχ(δ1)

]
(92)

which as before, shows that the convergence rate is constrained by the prior mass component
CN lnG0. Setting ϵNT = O(T−1) guarantees that the right hand side converges to zero. ■
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C.4 Proofs for GMM-type criterion

The proofs are similar to M-estimation. Here I only show the results for mean-square con-
vergence for brevity.

Proof. (Theorem 6, average parameter errors dMS(θ, θ
0))

We would like to verify the conditions of Theorem 1 under Assumption 5.

Identification. First notice that the population objective function is:

LN(θ) =
1

N

N∑
i=1

(
1

T

T∑
t=1

Em(wit; βγi)

)⊤

Ωi

(
1

T

T∑
t=1

Em(wit; βγi)

)
(93)

where Ωi is defined in Assumption 5.E. Since the moment condition is correctly specified
under assumption 5.C, we have Em(wit; β

0
γ0i
) = 0, and thus LN(θ) = 0 (regardless of the

choice of Ωi). Given that, the remaining of the proof is similar to the one for M-estimation.
Specifically, by the same notation in (63) and (64), we have

∣∣C̃∣∣ ≥ N(1− τ)ϵ
diam(B)− τϵ

(94)

for C̃ = {i : ∥βγi−β0
γ0i
∥2 ≥ τϵ} the set of units with “large” parameter errors. The population

loss then becomes

1

N

N∑
i=1

(
1

T

T∑
t=1

Em(wit; βγi)

)⊤

Ωi

(
1

T

T∑
t=1

Em(wit; βγi)

)

≥ 1

N

∑
i∈C̃

(
1

T

T∑
t=1

Em(wit; βγi)

)⊤

Ωi

(
1

T

T∑
t=1

Em(wit; βγi)

)

≥ 1

N

∑
i∈C̃

ρmin,i

∥∥Em(wit; βγi)
∥∥2

≥ 1

N

∑
i∈C̃

ρmin,imin
i

inf
∥β−β0

γ0
i

∥≥τϵ

∥∥Em(wit; βγi)
∥∥2

≥ 1

N

∑
i∈C̃

ρmin,iχ(τϵ)
2 ≥

∣∣C̃∣∣
N
ρχ(τϵ) ≥ (1− τ)ϵ

diam(B)− τϵ
ρχ(τϵ)2 . (95)

where ρmin,i is the minimal eigenvalue of Ωi, and ρ = mini ρmin,i, which by Assumption 5.E
is strictly positive and finite. Therefore, Condition 1.A holds with

χ̃(ϵ) =
(1− τ)ϵ

diam(B)− τϵ
ρχ(τϵ)2 (96)

69



for χ(·) defined in Assumption 5.C and some τ ∈ (0, 1).

Uniform convergence. The uniform convergence condition 1.A follows directly from
Lemma 3.

Prior mass condition. Similar to the proof for M-estimation, condition 1.C holds by
Lemma 6 and the smoothness condition 5.D. Specifically, we have

|LN(θ)− LN(θ0)| = LN(θ) =
1
N

∑N
i=1

(
1
T

∑T
t=1 Em(wit; βγi)

)⊤
Ωi

(
1
T

∑T
t=1 Em(wit; βγi)

)
≤ 1

N

∑N
i=1 ρmax,i

∥∥Em(wit, βγi)
∥∥2

= 1
N

∑N
i=1 ρmax,i

∥∥Em(wit, βγi)−m(wit; β
0
γ0i
)
∥∥2

≤ 1
N

∑N
i=1 ρmax,i

(
E
∥∥m(wit, βγi)−m(wit; β

0
γ0i
)
∥∥)2

≤ 1
N

∑N
i=1 ρmax,i

(∥∥βγi − β0
γ0i

∥∥EM(wit)
)2

≤ 1
N

∑N
i=1

∥∥βγi − β0
γ0i

∥∥2 supi ρmax,i supi(EM(wit))
2

≤ 1
N

∑N
i=1

∥∥βγi − β0
γ0i

∥∥2c2/qM ρ

(97)
where ρmax,i is the maximal eigenvalue of Ωi and ρ = supi ρmax,i. The first inequality in the
above follows from matrix inequality:

∀x ∈ Rd, x⊤Ax ≤ ρmaxx
⊤x = ρmax∥x∥2 (98)

for any real symmetrix matrix A. The second inequality follows by applying Jensen’s inequal-
ity to the expectation operator, i.e., ∥Ex∥ ≤ E∥x∥. The third inequality follows from the
smoothness condition 5.D, and the last inequality follows from the monotonicity of moments,
as in (69).

Therefore, we have for any δ > 0,{
1

N

N∑
i=1

∥∥βγi − β0
γ0i

∥∥2 ≤ δc
−2/q
M ρ−1

}
=⇒ {|LN(θ)− LN(θ0)| ≤ δ} . (99)

This implies that

Π({θ : LN(θ)− LN(θ0) ≤ δ})

=Π
(
{θ : LN(θ)− LN(θ0) ≤ δ}

∣∣C = C0)Π (C = C0)
≥Π

({
θ :

1

N

N∑
i=1

∥∥βγi − β0
γ0i

∥∥ ≤ δc
−2/q
M ρ−1

}∣∣C = C0)Π
(
C = C0

)
≥ exp

[
−C(N lnG0 +

∣∣ ln δc−2/q
M ρ−1

∣∣)] (100)

70



where the first inequality comes from (99) and the last inequality comes from Lemma 6.
Therefore, Condition 1.C holds with

c̃NT (δ) = exp
[
−C(N lnG0 +

∣∣ ln δc−2/q
M ρ−1

∣∣)] . (101)

Taken together. Now combining the above results, we have for any ϵ > 0,

E0ΠNT

({
θ :

1

N

N∑
i=1

∥βγi − β0
γ0i
∥ > ϵ

})

≤ exp

−NTψ
 (1− τ)ϵ
diam(B)− τϵ

ρχ(τϵ)2 − o(1)− δ −
C
(
N lnG0 +

∣∣ ln δc−2/q
M ρ−1

∣∣)
NTψ

 .

(102)

The remainder of the proof is almost identical to M-estimation, by noting that 0 < ρ < ρ <

∞. ■
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C.5 Proofs of technical lemmas

C.5.1 Proof of Lemma 3

Proof. For notational brevity, the sample loss is written as LNT (θ) = 1
N

∑N
i=1 m̂iΩ̂im̂i, and

the population loss is LN(θ) = 1
N

∑N
i=1miΩimi.

We first consider each summand of the objective function. we have for any β ∈ B∣∣m̂⊤
i Ω̂im̂i −miΩimi

∣∣
=
∣∣m̂⊤

i Ω̂im̂i − m̂⊤
i Ωim̂i + m̂⊤

i Ωim̂i −miΩimi

∣∣
≤
∣∣m̂⊤

i (Ω̂i − Ωi)m̂i

∣∣+ ∣∣m̂⊤
i Ωim̂i −miΩimi

∣∣
=
∣∣m̂⊤

i (Ω̂i − Ωi)m̂i −m⊤
i (Ω̂i − Ωi)mi +m⊤

i (Ω̂i − Ωi)mi

∣∣
+
∣∣(m̂i −mi)

⊤Ωi(m̂i −mi) + 2m⊤
i Ωi(m̂i −mi)

∣∣
≤
∣∣(m̂i −mi)

⊤(Ω̂i − Ωi)(m̂i −mi) + 2m⊤
i (Ω̂i − Ωi)(m̂i −mi)

∣∣
+
∣∣m⊤

i (Ω̂i − Ωi)mi

∣∣
+
∣∣(m̂i −mi)

⊤Ωi(m̂i −mi)
∣∣+ 2

∣∣m⊤
i Ωi(m̂i −mi)

∣∣
≤∥m̂i −mi∥2

[
∥Ωi∥+ ∥Ω̂i − Ωi∥

]
+ 2∥mi∥∥m̂i −mi∥

[
∥Ωi∥+ ∥Ω̂i − Ωi∥

]
+ ∥mi∥2∥Ω̂i − Ωi∥

(103)

where we have repeatedly used the triangle inequality, the matrix identity

a⊤Aa− b⊤Ab = (a− b)⊤A(a− b) + 2b⊤A(a− b)

and the matrix inequalities |a′Ab| ≤ ∥a∥ ∗ ∥A∥ ∗ ∥b∥.
Next, we take the supremum oevr i and β ∈ B. Since both sides are positive, it boils

down to taking the supremum over for each individual terms. Let us derive the upper bounds
for each elements on the right hand side.

Notice that by Assumption 5 and Lemma S1.2 in Su et al. (2016), we have

sup
i

sup
β∈B

∣∣∣∣ 1T
T∑
t=1

m(wit; β)− Em(wit; β)

∣∣∣∣ = op(N
−1) (104)

and thus
sup
i

sup
β∈B
∥m̂i −mi∥2 ≤ sup

i
sup
β∈B
∥m̂i −mi∥ ≤ op(N

−1) (105)
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Moreover, by Assumption 5.E, we have

sup
i
∥Ωi∥ = Op(1), sup

i
∥Ω̂i − Ωi∥ = op(N

−1) (106)

where the first equality comes from the fact that Ωi is finite positive definite and thus its
norm is bounded by some finite positive constant.

Finally, by assumption 5.D, we have

sup
i

sup
β∈B
∥Em(wit; β)∥ ≤ sup

i
M(wit) < c

1/q
M <∞ (107)

and thus supi supβ ∥mi∥ = Op(1) and so is supi supβ ∥mi∥2 .
Now combining the upper bounds of all the terms in (103), we have

supθ∈Θ
∣∣LNT (θ)− LN(θ)∣∣

≤ supi supβ ∥m̂i −mi∥2
[
supi ∥Ωi∥+ supi ∥Ω̂i − Ωi∥

]
+2 supi supβ ∥mi∥ supi supβ ∥m̂i −mi∥

[
supi ∥Ωi∥+ supi ∥Ω̂i − Ωi∥

]
+supi supβ ∥mi∥2 supi ∥Ω̂i − Ωi∥

≤ op(N
−1)Op(1) = op(N

−1)

(108)

which gives the desired result. ■
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C.5.2 Proof of Lemma 4

Proof. Notice that

Π
(
C = C0

)
= Π

(
C = C0|G = G0

)
Π(G = G0). (109)

The prior on selecting the true number of groups is bounded below by

Π
(
G = G0

)
= exp[−λ]λ

G0

G0!
≥ exp[−λ+G0 lnλ−G0 lnG0] ≥ exp[−2G0 lnG0] . (110)

Since G0 is fixed and finite by Assumption 4.G, it remains to show that Π(C = C0|G = G0) ≥
exp [−CN lnG0] for some positive constant C.

To this end, we first use the Dirichlet-multinomial conjugacy result (e.g., Miller and
Harrison, 2018): for arbitrary γ and G,

Π

(
γ1, . . . , γN

∣∣∣∣G)
=

∫ 1

0
· · ·
∫ 1

0
Π

(
γ1, . . . , γN

∣∣∣∣η1, . . . , ηG, G) dη1 · · · dηG

=
∫ 1

0
· · ·
∫ 1

0

∏N
i=1 ηγi

Γ(Gα)
Γ(α)G

∏G
g=1 η

α−1
g dη1 · · · dηG

= Γ(Gα)
Γ(N+Gα)

∏G
g=1

Γ(
∑N

i=1 1{γi=g}+α)
Γ(α)

(111)

and thus
Π

(
C = C0

∣∣∣∣G = G0

)
=

∑
γ∈[G0]N : C(γ)=C0 Π

(
γ

∣∣∣∣G = G0

)
= (G0!)

Γ(G0α)
Γ(N+G0α)

∏G0

g=1

Γ(N0
g+α)

Γ(α)

(112)

Next we use properties of the Gamma function to derive a lower bound on the above. Note
that α ≥ 1 and thus G0α ≥ 1. If G0α > 2, we have

Γ(G0α) ≥ Γ(⌊G0α⌋)
Γ(⌊G0α⌋+N + 1) ≥ Γ(⌊G0α⌋+N)

(113)

and thus
Γ (G0α)

Γ(N +G0α)
≥ Γ(⌊G0α⌋)

Γ(⌊G0α⌋+N + 1)
=

(⌊G0α⌋ − 1)!

(⌊G0α⌋+N)!
. (114)

One the other hand, if 1 ≤ G0α ≤ 2 we have

Γ (G0α)

Γ(N +G0α)
≥ (minx Γ(x)) · 1

Γ(⌊G0α⌋+N + 1)
=

(minx Γ(x)) · 0!
(⌊G0α⌋+N)!

=
(minx Γ(x)) · (⌊G0α⌋ − 1)!

(⌊G0α⌋+N)!
. (115)
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Similarly, if α > 2, we have

Γ(α +N0
g )

Γ(α)
≥

Γ(⌊α⌋+N0
g )

Γ(⌊α⌋+ 1)
=

(
⌊α⌋+N0

g − 1
)
!

(⌊α⌋)!
, (116)

while if 1 ≤ α ≤ 2, we have

Γ(α +N0
g )

Γ(α)
≥

Γ(⌊α⌋+N0
g )

1
=

(
⌊α⌋+N0

g − 1
)
!

(⌊α⌋)!
. (117)

Combining the above results, we have for all α ≥ 1,

Γ (G0α)

Γ(N +G0α)
≥ C̃1

(⌊G0α⌋ − 1)!

(⌊G0α⌋+N)!
,

Γ(α +N0
g )

Γ(α)
≥
(
⌊α⌋+N0

g − 1
)
!

(⌊α⌋)!
. (118)

Plug this into (112), we obtain

Π

(
C = C0

∣∣∣∣G = G0

)
≥
(
G0
)
!C̃1

(⌊G0α⌋ − 1)!

(⌊G0α⌋+N)!

G0∏
g=1

(
⌊α⌋+N0

g − 1
)
!

(⌊α⌋)!
. (119)

To bound the RHS, we use the fact that multinomial coefficients are maximized when group
sizes are equal. Specifically, rewrite the cumulative product in the above as

∏G0

g=1

(⌊α⌋+N0
g−1)!

(⌊α⌋)! =

(
[(⌊α⌋)!]G

0

(⌊α⌋+N0
1−1)!···(⌊α⌋+N0

G0−1)!

)−1

=

([∑G0

g=1(⌊α⌋+N0
g−1)

]
!

[(⌊α⌋)!]G0

)( [∑G0

g=1(⌊α⌋+N0
g−1)

]
!

(⌊α⌋+N0
1−1)!···(⌊α⌋+N0

G0−1)!

)−1

≥
(
[G0⌊α⌋+N−G0]!

[(⌊α⌋)!]G0

)(
[G0⌊α⌋+N−G0]!

[(⌊α⌋+⌊N/G0⌋−1)!]G
0−r[(⌊α⌋+⌊N/G0⌋)!]r

)−1

= {(⌊α⌋+ ⌊N/G0⌋ − 1) · · · (⌊α⌋+ 1)}G
0

(⌊α⌋+ ⌊N/G0⌋)r

(120)

where r = N − ⌊N/G0⌋G0. Plug this into (119), we have

Π

(
C = C0

∣∣∣∣G = G0

)
≥ (G0)!C1

{(⌊α⌋+⌊N/G0⌋−1)···(⌊α⌋+1)}G
0

(⌊α⌋+⌊N/G0⌋)r
(⌊G0α⌋)···(⌊G0α⌋+N)

= (G0)!C̃1
{(⌊α⌋+⌊N/G0⌋−1)···(⌊α⌋+1)}G

0

{(⌊G0α⌋+2G0·1)···(⌊G0α⌋+2G0·(⌊N/G0⌋−1))}G0×

{(⌊G0α⌋+2G0·1)···(⌊G0α⌋+2G0·(⌊N/G0⌋−1))}G
0

(⌊G0α⌋)···(⌊G0α⌋+N)
(⌊α⌋+ ⌊N/G0⌋)r

(121)
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For the first ratio, rewrite it as

{(⌊α⌋+⌊N/G0⌋−1)···(⌊α⌋+1)}G
0

{(⌊G0α⌋+2G0·1)···(⌊G0α⌋+2G0·(⌊N/G0⌋−1))}G0

=

{∏⌊N/G0⌋−1

j=1
⌊α⌋+j

2G0(⌊G0α⌋/(2G0)+j)

}G0

≥
(

1
2G0

)⌊N/G0⌋G0−G0
(122)

where the last inequality comes from the fact that

⌊α⌋
⌊G0α⌋

≥ ⌊α⌋
(⌊α⌋+ 1)G0

≥ 1

2G0
=⇒ ⌊α⌋ ≥ ⌊G

0α⌋
2G0

. (123)

To analyze the second ratio, we first notice that there are

G0 ×
(⌊
N/G0

⌋
− 1
)
= G0

⌊
N/G0

⌋
−G0 ≤ N

terms in the numerator. Collect the first G0 ⌊N/G0⌋ − G0 terms in the denominator and
rewrite the ratio as(

G0∏
j=1

⌊G0α⌋+ 2G0 · 1
⌊G0α⌋+ j

)
× . . .×

(
G0∏
j=1

⌊G0α⌋+ 2G0 · (⌊N/G0⌋ − 1)

⌊G0α⌋+G0 · (⌊N/G0⌋ − 2) + j

)
≥ 1 . (124)

The remaining terms in the denominator are

1

⌊G0α⌋+G0 ⌊N/G0⌋ −G0 + 1
× . . .× 1

⌊G0α⌋+N
≥
(

1

⌊G0α⌋+N

)r+G0

.

Combining all these results, we have

Π

(
C = C0

∣∣∣∣G = G0

)
≥ (G0)!C̃1

(
1

2G0

)⌊N/G0⌋G0−G0

×
(

1
⌊G0α⌋+N

)r+G0

× (⌊α⌋+ ⌊N/G0⌋)r

= (G0)!C̃1

(
1

2G0

)⌊N/G0⌋G0

×
(

2G0

⌊G0α⌋+N

)G0

×
(

⌊α⌋+⌊N/G0⌋
⌊G0α⌋+N

)r (125)

As is clear from the above expression, the lower bound is driven by the term (2G0)
−⌊N/G0⌋G0

.
Let C1 > 0 be some constant, we can express the lower bound as

Π

(
C = C0

∣∣∣∣G = G0

)
≥ exp

[
−C1N lnG0

]
. (126)

■
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C.5.3 Proof of Lemma 6

Proof. The results follow by Lemma 4 and Lemma 5. First notice that regardless of the
distance metrics used, from Lemma 4 we have

Π
(
d(θ, θ0) ≤ ϵ

)
=Π

(
d(θ, θ0) ≤ ϵ

∣∣∣∣C = C0)Π
(
C = C0

)
≥Π

(
d(θ, θ0) ≤ ϵ

∣∣∣∣C = C0) exp
[
−C1N lnG0

]
(127)

where C1 > 0 is some finite constant. Such decomposition greatly ease the proof. In
particular, suppose we have recovered the true group structure. Then if ∥βg − β0

g∥2 ≤ ϵ for
all the recovered groups, we have

1

N

N∑
i=1

∥βγi − β0
γ0i
∥2 = 1

N

G0∑
g=1

∑
i∈C0

g

∥βg − β0
g∥2 ≤

1

N

G0∑
g=1

∑
i∈C0

g

ϵ =

∑G0

g=1N
0
g

N
ϵ = ϵ . (128)

That is, {
∀g, ∥βg − β0

g∥2 ≤ ϵ
}

=⇒

{
1

N

N∑
i=1

∥βγi − β0
γ0i
∥2 ≤ ϵ

}
(129)

and thus

Π
(
∀g, ∥βg − β0

g∥2 ≤ ϵ
∣∣C = C0) ≤ Π

(
1

N

N∑
i=1

∥βγi − β0
γ0i
∥2 ≤ ϵ

∣∣C = C0) . (130)

Moreover, since the event
{
∀g, ∥βg − β0

g∥2 ≤ ϵ
}

does not involve the group structure, we can
simply write

Π

(
1

N

N∑
i=1

∥βγi − β0
γ0i
∥2 ≤ ϵ

∣∣∣∣C = C0
)
≥ Π

(
∀g, ∥βg − β0

g∥2 ≤ ϵ
)
. (131)

Plug this back in (127) gives

Π
({
θ : dMS(θ, θ

0) ≤ ϵ
})
≥ Π

(
∀g, ∥βg − β0

g∥2 ≤ ϵ
)
exp

[
−C1N lnG0

]
. (132)

Similar results hold for the Hausdorff distance. Specifically, for any ϵ > 0, and an
arbitrary true group k

min
l∈{1,...,G}

∥βl − β0
k∥ ≤ ∥βγi − β0

k∥
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=
1

N0
k

N∑
i=1

1{γ0i = k}∥βγi − β0
γ0i
∥ ≤ 1

N0
k

N∑
i=1

∥βγi − β0
γ0i
∥

≤ 1

N0
k

√√√√N

(
N∑
i=1

∥βγi − β0
γ0i
∥2
)

=
N

N0
k

√√√√ 1

N

N∑
i=1

∥βγi − β0
γ0i
∥2 (133)

where the first inequality is obtained by construction; the second inequality is trivially true;
the third inequality follows from Cauchy-Schwarz inequality. Therefore, we have

maxk∈{1,...,G0} minl∈{1,...,G} ∥βl − β0
k∥ ≤ maxk∈{1,...,G0}

1
N0

k

∑N
i=1 ∥βγi − β0

γ0i
∥

≤
(
maxk∈{1,...,G0}

N
N0

k

)√
1
N

∑N
i=1 ∥βγi − β0

γ0i
∥2

(134)

Now by Assumption 4.G, we have

0 < max
k∈{1,...,G0}

N

N0
k

=
N

mink∈{1,...,G0}N
0
k

≤ N

N0
min

< C1 (135)

for some finite positive constant C1. We can write

max
k∈{1,...,G0}

min
l∈{1,...,G}

∥βl − β0
k∥ ≤ C1

√√√√ 1

N

N∑
i=1

∥βγi − β0
γ0i
∥2 (136)

The other half of the Hausdorff distance can be bounded similarly, by noting that

min
k∈{1,...,G0}

∥βl−β0
k∥ ≤ ∥βl−β0

γ0i
∥ = 1

N0
l

N∑
i=1

1{γ0i = l}∥βγi−β0
γ0i
∥ ≤ 1

N0
l

N∑
i=1

∥βγi−β0
γ0i
∥ (137)

and the rest follows. The key observation is that here γi = γ0i under the true group structure.
Taken together, the Hausdorff distance (under true grouping) is bounded by

dH(θ, θ
0) ≤ C

√√√√ 1

N

N∑
i=1

∥βγi − β0
γ0i
∥2 (138)

for some finite constant C. Therefore, we also have

{
∀g, ∥βg − β0

g∥2 ≤ ϵ
}

=⇒

{
1

N

N∑
i=1

∥βγi − β0
γ0i
∥2 ≤ ϵ

}
=⇒

{
dH(θ, θ

0) ≤ C
√
ϵ
}

(139)
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which implies

Π
(
dH(θ, θ

0) ≤ ϵ
)
=Π

(
dH(θ, θ

0) ≤ ϵ
∣∣C = C0)Π (C = C0)

≥Π
(
∀g, ∥βg − β0

g∥2 ≤ C̃ϵ2
)
exp

[
−C1N lnG0

]
(140)

where C̃ = 1/C2.
As a result, proving the lemma is equivalent to proving a lower bound for Π

(
∀g, ∥βg − β0

g∥ ≤ ϵ
)

for any positive ϵ > 0. Notice that the additional constant term C̃ in the Hausdorff distance
does not require a separate proof since C̃ is a finite positive constant.

Now, for any arbitrarily small ϵ > 0, we have

Π
(
∀g, ∥βg − β0

g∥ ≤ ϵ
)

=
∏G0

g=1 Π
(
∥βg − β0

g∥ ≤ ϵ
)

≥
∏G0

g=1

(
exp

[
−1

2
β0⊤
g Σ−1β0

g

]
Π(∥βg∥ ≤ ϵ)

)
.

(141)

where the first inequality comes from probability algebra and the fact that each βg is drawn
independently from N(0,Σ), and the second inequality comes from Anderson’s Lemma
(Lemma 5). To bound the RHS, we use the decomposition of Σ = RΛR⊤ such that
Λ = diag(λ1, . . . , λd) is a diagonal matrix of eigenvalues and R is an orthogonal matrix
R⊤R = RR⊤ = I. Then we have, for the first term,

exp
[
−1

2
β0⊤
g Σ−1β0

g

]
= exp

[
−1

2

(
R⊤β0

g

)⊤
Λ−1

(
R⊤β0

g

)]
= exp

[
−1

2

∑d
j=1 ξ

2
gjλ

−1
j

] (142)

where ξg = R⊤β0
g . For the second term, we have

Π(∥βg∥ ≤ ϵ) = Π
(
β⊤
g βg ≤ ϵ2

)
= Π

((
Σ−1/2βg

)⊤
Σ
(
Σ−1/2βg

)
≤ ϵ2

)
= Π

((
R⊤Σ−1/2βg

)⊤
R⊤ΣR

(
R⊤Σ−1/2βg

)
≤ ϵ2

)
= Π

(
ξ̃⊤Λξ̃ ≤ ϵ2

)
= Π

(∑d
j=1 λj ξ̃

2
j ≤ ϵ2

)
≥ Π

(
∀j, ξ̃2j ≤ ϵ2

dλj

)
=
∏d

j=1 Π
(
ξ̃2j ≤ ϵ2

dλj

)
=

∏d
j=1 Π

(
|ξ̃j| ≤ ϵ√

dλj

)
=
∏d

j=1

[
2Φ

(
ϵ√
dλj

)
− 1

]
, (143)

where ξ̃ = R⊤Σ−1/2βg ∼ N(0, Id) and hence entries ξ̃j are independent standard normal
random variables, with cdf Φ(·).
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Combine (142) and (143), we have

Π
(
∀g, ∥βg − β0

g∥ ≤ ϵ
)

≥ exp

[
−1

2

∑G0

g=1

∑d
j=1

(
ξ2gjλ

−1
j − 2 ln

[
2Φ

(
ϵ√
dλj

)
− 1

])] (144)

To derive a lower bound of the above is equivalent to derive an upper bound of the summands.
To bound the logarithm term, notice that for a sufficiently small ϵ > 0, we have

ξ2gjλ
−1
j − 2 ln

[
2Φ

(
ϵ√
dλj

)
− 1

]
≤ ξ2gjλ

−1
j + 2 + 2

∣∣∣∣ ln( ϵ√
dλj

) ∣∣∣∣
≤ ξ2gj (λj,min)

−1 + 2 + 2

∣∣∣∣ ln( ϵ√
d(λj,max)

) ∣∣∣∣
≤ ξ2gj (λj,min)

−1 + 2 + 2| ln ϵ|+ | ln(dλj,max)|

(145)

and thus

Π
(
∀g, ∥βg − β0

g∥ ≤ ϵ
)

≥ exp
[
−1

2
(λj,min)

−1∑G0

g=1

∑d
j=1 ξ

2
gj −G0d−

∑G0

g=1

∑d
j=1 | ln ϵ| −

1
2
G0d| ln(dλj,max)|

]
≥ exp

[
−G0d

(
1
2
(λj,min)

−1Cξ + 1 + 1
2
| ln(dλj,max)|+ | ln ϵ|

)]
(146)

where Cξ = maxg,j ξ
2
gj, which is a finite constant, by the compactness assumption 4.A.

Moreover, since Σ is positive definite, the minimal and maximal eigenvalues are also finite,
i.e., λj,min, λj,max < ∞. As a consequence, the above lower bound is driven by ϵ. That is,
there exists some positive constant C3 such that

Π
(
∀g, ∥βg − β0

g∥ ≤ ϵ
)
≥ exp [−C3| ln ϵ|] . (147)

Combine (147) and (127), we have for any ϵ

Π(d(θ, θ0) ≤ ϵ) ≥ exp [−C1N lnG0 − C3| ln ϵ|]
≥ exp [−C (N lnG0 + | ln ϵ|)]

(148)

for some constant C > 0. Therefore, Condition 2.D is satisfied with

cNT (ϵ) = exp
[
−C

(
N lnG0 + | ln ϵ|

)]
(149)

and the results follow. ■
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