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S1 Bias correction

Theorem 2 shows that the infeasible GLP estimator admits
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This section derives the analytical formula to estimate the bias. We define the following

estimates:
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Results from Section S4.3 shows that the bias contains
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The above bias derivation generalizes the setup in Su et al. (2016), where they ignore the
bias caused by the estimation of individual-level parameters. As a result, they only contain
the first term B;. However, general formula for correcting the bias arising from the weighting
matrix By is not available. Instead, here I assume individual-level 2SLS weighting matrix,

~
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We propose to estimate the bias by
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where k(|t — s|) is some kernel function, e.g., the Bartlett kernel ker(|t — s|) = 1 — Z:;l
Having obtained estimates of By, By, B3, B4, we can correct the bias by
bch = Bj,h — i;;ll (31 + By + B3 + B4> (5)
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Another popular way to correct the bias is to use half-panel jackknife (Dhaene and

Jochmans, 2015). In particular, we can obtain the bias-corrected estimator as

3 = 285 — (Bja + B31)/2 (6
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where Bm is the raw estimates, and Bj{h, 6}2 , are estimates based on the first half (1 <t <
|T/2]) and the second half (14 [T/2| <t <T') respectively.

Such bias correction, however, may not work well in the current setup due to the presence
of misclassification. For example, when the group assignment is imprecisely estimated, even
when the bias-corrected estimator recovers the “pseudo-true” parameter, it may still not be

well centered around the true group parameters.



S1.1 Simulation studies

This section examines the performance of bias correction methods by replicating the sim-
ulation study. We consider two inference method. The first one estimate the asymptotic
variance of the GLP estimator according to Theorem 2, without taking into account the
potential incidental parameter bias. The second approach applies the half-panel jackknife
correction (Dhaene and Jochmans, 2015).

Before presenting the result, one may wonder why should researchers even use the uncor-
rected confidence interval, knowing that in the current setup a \/% bias is present. However,
estimating the bias, be it the analytical form or the more flexible jackknife alternative, can
be extremely difficult in when the data has latent group structure. For example, the bias
formula provided in (4) requries that we are working with the true group partition.

The results are reported in Table S2 and Table S3. Two patterns are noteworthy. For the
infeasible GLP estimator, the bias correction approach produces coverage probabilities close
to the nominal level. If we do not correct the bias, the coverage probabilities deteriorates
especially at longer horizons; see for comparison Table S1.

In stark contrast, the bias correction method fails to improve the coverage of the GLP
confidence intervals. Instead, it sometimes leads to even much lower coverage. This indi-
cates that the incidental parameter bias is poorly estimated, confirming our conjecture that
misclassification.

Finally, as expected, the bias correction is useful when the GLP recovers the latent group
structure with high accuracy. This points to a case when correcting incidental parameter
bias is particularly useful: the time series dimension is large enough for consistent group

estimation, while the cross-sectional dimension is even much larger N.

S1.2 Bias-robust inference

When the time series dimension is limited, Theorem 2 may not provide an accurate approx-

imation for the finite sample behavior of the GLP. This section provides a bias correction



method that explicitly takes into account the worst-case bias in the presence of incidental
parameters and possible misclassification.
Recall that by (9) in the main text (page 10), for any given group assignment vector ¥

we have
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For notational convenience, let us denote A;;, = Ni] Yo Mg =4} dpiM.cindzei. Then

we can rewrite the above expression as
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As we can see from (8), the bias of the GLP estimator can be decomposed into two parts.
For starters, the GLP estimator is subject to misclassification bias. In fact, (8) shows that
when 1 {g; = j, ¢? = [} # 0 (as is the case with small or fixed T') the GLP estimator converges
to pseudo-true parameters that are weighted averages of the true ones !. As a result, the
bias depends not only on the misclassification rates but also the discrepancy between true
group parameters ﬁgh — ﬂﬁh. Without knowledge of the true group parameters, neither the
sign nor the magnitude of the bias can be pinned down. This feature makes explicit bias
correction for misclassification difficult.

Second, even with perfect knowledge of the group structure, e.g., 7° is known, the GLP
estimator is subject to the classical incidental parameter bias (Fernandez-Val and Lee, 2013),
which is analyzed in the previous section.

To address the above concerns, I propose a bias-robust inference method that explicitly

takes into account the worst-case bias. The key idea is to replace the true group differences

LA similar expression is derived by Bonhomme and Manresa (2015)



by our estimates. Specifically, by add and subtract the GLP estimates, we have
Bln — ?,h = Bh — Bun + Bin — Bin + Bin — Bﬁh : (9)
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bias by By, we can rewrite (8) as
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Several comments are in order. First, the above system describes the relation between
the parameter estimation errors Bj,h — Bﬁh, the misclassification errors (reflected in terms
Cj.n), and the incidental parameter bias.

Second, A;pu,Cin, Bin and By in the above expression are all readily available or es-
timable. The remaining unknown is the misclassification errors 1{g; = j,¢? = [}.

When the time series dimension is moderately large, we may estimate the misclassification
errors by the group assignment probabilities using bootstrap. Specifically, suppose we can
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generate bootstrapped data {(y;/, 2, w; We can apply the GLP estimation to the

bootstrapped data, which leads to a v®). We can then estimate the misclassification errors
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S2 Additional simulation evidence

S2.1 Alternative sample sizes

This section provides additional simulation evidence on different sample sizes. Specifically, I
repeat the exercise in Section 6.2 with a short T panel (7" = 50), a large T panel (T" = 300),
and a panel with sample size comparable to the empirical study (7" = 200, N = 400).

Table S4 reports the results with relatively short 7. Three observations are noteworthy.
First, the performance of the GLP depends crucially on the true IRs: in Design 1 where
the IRs are inseparable in short horizons, the GLP is unable to correctly classify entities; in
contrast, in Design 2 where the IRs are separable in short horizons, the GLP works decently
well. This observation illustrates clearly the difficulty in grouping IRs, and emphasizes the
importance of using horizon-specific weighting matrix.

Second, the performance of the GLP remains stable as we fix T" and increase N, which is
in line with the findings in Section 6.2. In fact, although the consistency of the GLP depends
on T going to infinity, the GLP still gains from the increase in the cross-sectional dimension.

Third, we see that the GLP outperforms the individual LP-IV by a wide margin under
short T'. Specifically, the RMSE of the GLP is, in the worse case, only 56.5% of the individual
LP-IV counterpart. The gain comes from a large reduction in the variance, as Column BR
suggests.

Next we consider the cases with both N and 7" large. Comparing Table S5 and Table 5S4,
we see that the performance of the GLP improves substantially as the time series dimension
gets large. Moreover, consistent with small sample case, the GLP performance remains
stable as we increase the cross-section dimension. In terms of the coverage probabilities of
the confidence interval, Table S8 shows that the coverage rates are satisfactorily, which is
reassuring for the results in our empirical application.

Given the above patterns, it is unsurprising to see that the GLP performs extremely
well when the time series dimension is large. Table S6 reports the results with T = 300

and N ranging from 500 to 1500. Even though we have N > T, the GLP still outperforms



the panel LP-IV and the individual LP-IV in all cases. For example, in Design 1 with
T = 300, N = 1500, G° = 3, the RMSE of the GLP is only 0.238, which is around half
of the individual LP-IV counterpart (0.423) and one-third of the panel LP-IV one (0.809).
Moreover, the classification accuracy remains well above 95%, corroborating that the time
series dimension can grow slower than the cross-sectional dimension.

Importantly, Table S7 and Table S9 show that the GLP coverage probabilities remain
satisfactory when N is large. In particular, the GLP coverage rates are comparable with the
infeasible counterparts when N is around three times larger than 7. However, researchers
should be more careful when interpreting the confidence bands when the cross-sections are
exceedingly large.

On the whole, the simulation evidence shows that the GLP performs satisfactory in finite

samples, even when N is larger than 7.

S2.2 Alternative sample sizes: unknown group number

This section reports additional simulation evidence when the number of groups is unknown
and selected by the information criterion. The simulation setup is identical to Section 6.1.
As is shown in Table S10, the selected number of groups converge to the true as the
sample size increases. Moreover, it generally minimizes the RMSE even when the group
number is misspecified. When T is particularly small, however, it tends to under-select and
may not minimize the RMSE, e.g. T = 50, G = 3 in Design 2. Overall, the patterns are in

line with the findings in Section 6.3.

S2.3 Alternative weighting matrix

One of the main merits of the GLP estimator is its flexibility in choosing weighting matrix,
which is important in grouping IR estimates. This section studies various choices of the

weighting matrix, including:

1. Unit and horizon specific weighting matrix (hereafter, UH). In particular, we set QM =
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Vi, with V! defined in (6).

A~

2. Horizon specific weighting matrix (H). We set €, = Q) = (&> Vin)
3. Unit specific weighting (U). We set Q;, = Q; = (4 S Vi) L

4. 2SLS weighting matrix. We set €2 , = QSIS = %Zthl ZitZ] 4

5. IV weighting matrix. We set Qi,h =QV = I

As is clear, the alternative weighting matrices exploit the information in the data to
varying degrees. Intuitively, the UH weight is most efficient as it not only downweights
uninformative horizons but also downweights uninformative units. However, the efficiency
comes at a cost of biasedness. To see this, consider the case without control variables. The

GLP with known group partition is:

-1
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1€SY 1€SY
Since Qijh is correlated with Jze,@h, the resulting estimates do not converge to the mean
effects but some weighted average of the individual effects. This problem is reminiscent of
the biasedness of the weighted least squares estimator.

The horizon-specific weights (H) instead only weigh against uninformative horizons.?
Although it leads to efficiency loss especially in the presence of heteroskedasticity, it is free
of the aforementioned bias.

Given that, unit-specific weighting (U) tends to be both biased and inefficient. As is well
known in the VAR and local projections literature (Kilian and Liitkepohl, 2017), impluse

responses are less precisely estimated for the longer horizons. Therefore, grouping based on

unit-specific weights is likely to perform worse.

20ne may argue for an alternative horizon-specific weight Qp = Va_é where ‘A/(%h is the estimated asymp-
totic variance matrix of v in the panel LP-IV model, with standard errors clustered in the unit-level (Cameron
and Miller, 2015). However, since the pooled panel LP-IV is by construction inconsistent, this alternative
choice may perform worse.

11



We now discuss the results of different weighting schemes, which are summarized in
Table S11-Table S18. First, Table S11 shows that horizon-specific weights lead to the highest
classification accuracy. Notice that the gain can be quite large. For example, in Design 2
with N = 300,7 = 100, G° = 3, the H weight accuracy achieves 99.6%, while 2SLS results
in only 89.8% accuracy. The unit-and-horizon specific weights are generally the second-best
option. The remaining weighting choices generally lead to similar classification accuracy. To
sum up, the horizon-specific weights are preferred for better group assignment.

Second, Table S12 shows the GLP outperforms the panel LP-IV and the individual LP-IV
regardless of the choices of weighting matrices. Moreover, consistent with the previous re-
sults, the horizon-specific weighting yields lowest RMSE, followed closely by the UH weights.
Besides, the U weights generally lead to slightly more precise IR estimates than the 2SLS
and IV. Overall, the horizon-specific weights is most effective in reducing RMSE.

As for the length of confidence intervals, the UH weights generally have the narrowest
bands, as Table S13 shows. The horizon-specific bands are instead the largest, although still
only one-fifth of the IND counterparts. Given that some weighting schemes are more biased
(e.g. 2SLS and IV leading to misclassification errors), we should expect large differences in
the coverage probabilities.

This is confirmed by Table S14-Table S18. For ease of interpretation, I report the coverage
probabilities of the infeasible GLP as the benchmark, and differences between the IGLP and
the GLP with different weighting schemes. For example, the column for (N = 100,7 =
100, G® = 2,h = 0, Design 1) shows that the IGLP coverage probabilities are 94.9% while
the UH coverage rates are on average 14% lower than the IGLP.

On average, the tables show that coverage probabilities of the horizon-specific weights
are closest to the infeasible counterparts. Alternative weights can lead to substantial under
coverage especially when 7" is moderate. For example, consider the case with (N = 300,7 =
100, G® = 2 Design 1). The coverage rates for H weights are on average 8.9% lower than
the infeasible ones, whereas 2SLS weights are on average 16.1% lower. On the whole, the

horizon-specific weighting scheme performs the best in terms of the coverage rates.
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In conclusion, the evidence shows that the H weights are preferred. Unless otherwise

noted, this will be the default weighting scheme used in this paper.

S2.4 Alternative inference methods

This section compares the large T inference methods (Theorem 2) and small T adjustment
(Proposition ??7). We label the resulting outcomes as LT and ST.

Table S19 reports the band ratios of the corresponding confidence bands. As expected,
the ST confidence intervals are always larger than the LT ones, although the differences are
limited. Moreover, the two confidence bands converge as T' increases, which is in line with
Proposition ??7. Table S20 and Table S21 further confirm the previous results. As we can
see, the coverage rates of the ST inference are on average slightly higher than the LT ones.
Overall, the result suggests that ST is a slightly more conservative inference method. Given

that, the large T inference is used by default in this paper.

S2.5 Alternative specification: first-differenced

Given our baseline DGP

Yie = i+ PgYii—1 + 0gTiy + €y | (14)

Tit = i+ TZ+ Uiy

model (19) (in the paper) introduces dynamic panel bias when projecting out unit fixed
effects. To address this concern, I estimate the first-differenced model following Anderson

and Hsiao (1982). Specifically, denote Ay;; = vi+ — yi—1, then

Ayi,t = pgiAyi,t—l + 5giAxi,t + Aei,t- (15)

Notice that Ay, ;1 is endogenous as it is correlated with €;;_; (and thus Ae¢;;). However,

we can instrument it with vy, ;5. As for Az;, = TAZ; + Au,;y, we can instrument it with

13



Zit—1. To sum up, we estimate the impulse responses through

AYirrnh = B, hATi 4 + i nAYit—1 + €ipin (16)

with instrument (Z;;—1, Yit—2).

The results are summarized in Table S22-Table S24. Three comments are in order.
First, comparing Table 522 and Table 2, we see that all the conclusions drawn in Section 6.2
hold under this alternative specification: 1) the GLP serves as a good data-driven middle
ground between the panel LP-IV and the individual LP-IV; 2) the GLP performs better as
T increases.

Second, the RMSE of the baseline fixed effects estimation can be even smaller than
the first-differenced alternative, because of the reduction in variance. As the Column BR
suggests, the first-differenced estimator is, in the current setup, slightly less efficient than
the fixed effects estimator and thus has larger confidence bands.

Third, Table S23 shows that the GLP coverage rates are overall more conservative un-
der the first-differenced specification. Similarly, the coverage rates of the infeasible GLP
also improves in the first-differenced setup especially for longer horizons (see Table S1 and
Table S24). This is mainly because of the dynamic panel bias in the baseline fixed-effects
setup.

Overall, the simulation evidence confirms the reliable performance of the GLP algorithm.
Moreover, the first-differenced specification reduces the dynamic panel bias, while being

slightly less efficient than the baseline fixed effects case.

S2.6 Alternative objective function

As is mentioned in the paper, the baseline GLP estimator defined in (4) is by construction
different from the conventional panel GMM estimator. For illustrative purposes, let us
compare the two objective functions given the true group partition assuming that there

are no controls (and fixed effects) and we use identical weighting matrix €;, = I. The
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conventional GMM criterion is

/
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where B?h is the true parameter, and X; = (z;1,...,2;7) and Z; = (%1,...,2.7)" are

defined as in the paper. Under conventional dependence and moment assumptions, we have
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Instead, my objective function gives:
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The first term converges to some positive definite matrix ) by standard assumptions,

e.g. Assumptions 1 and 3. As for the second term, we can decompose it by
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Now the first element is asymptotically normal, whereas the second term contains the bias
from IV estimation, and the third term is asymptotically negligible under Assumption 1.B

and Lemma 9.

In particular, assume that we have the first stage:
Tip = Tzip + uiy (21)

where II is a K X L matrix governing the instrument strength. Then we can rewrite the

second term as
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where U; = (u;1,...,u;r)". Two comments are in order. First, it is clear that the bias arises

from the correlation between u;; and €; 4, which is well documented in the IV literature
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(Nagar, 1959). Second, the magnitude of the bias is determined by the convergence rate of
T relative to N. By Assumption 3.B, within each group we have N/T" — 0 and thus the

bias is negligible, which leads to

xl Zz 1, ¥
Z Zt 1 t t Zt 1 Z tE t+h i> N(O’ V) (23)
ZESO ﬁ

and

VNT (i — 80,) 5 N(0,SVE) (24)

The difference between our estimator and the conventional one is twofold. First, our
estimator is generally less efficient because it does not pool over both ¢ and ¢. Second, our
estimator can be biased when 7' is small relative to N;. In our setup, we assume that 7" is
large by Assumption 3.B so that the bias is negligible. Moreover, the bias is small enough in
macroeconomic applications with large T'. In this sense, the difference between the proposed
GMM estimator and the conventional one is small.

To quantify the difference, I study the finite sample performance of the infeasible GLP
under these two objective functions. In particular, I simulate the data from model (18) and
estimate (19) using the true group partitions.

Table S25 reports the results. Three observations stand out. First, the fully-pooled
criterion generally leads to more precise estimates with lower RMSE. Second, the baseline
GLP criterion yields slightly narrower confidence bands. Third, however, the differences
between the criteria remain sufficiently small through all sample sizes, with the biggest
RMSE differential being only 0.02. Moreover, Table S27 and Table S26 report the coverage
rates. Again, the coverage rates are slightly higher for the fully-pooled estimator, although
the average difference in coverage probabilities is merely 1.3%.

Overall, finite sample analysis shows that the fully-pooled estimator in general performs

better, although the marginal gains are quantitatively small.
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S2.7 Horizon-by-horizon grouping

Various methods have been proposed to group coefficients (Su et al., 2016; Wang et al., 2018;
Lewis et al., 2019). However, these approaches fail to recognize the fact that (a) IRs may
overlap at some horizons, e.g. starting from close to zero in h = 0, and (b) IRs are very
noisy for longer horizons. Therefore, it may be difficult to cluster impulse responses horizon-
by-horizon (hereafter HBH) both in population (due to the violation of Assumption 2.B)
and in samples (due to large estimation variance). In this section, I repeat the exercise in
Section 6.2 but estimate it under HBH.

Table S30 and Table S31 present the results for classification accuracy, confidence bands
ratios and RMSE. We discuss the three metrics in turn. First, grouping IRs horizon-by-
horizon results in extremely imprecise group estimates. Second, the band ratios of the
HBH remain largely the same as our baseline GLP. Combined with the low classification
accuracy, we would expect that the confidence intervals of the HBH seriously undercover
the true IRs. Finally, the RMSE of the HBH are inflated due to the misclassification biases.
Overall, the baseline GLP performs much better than the HBH. Even in the worse case with
(N = 100,T7 = 100,G° = 3, Design 1), our baseline GLP increases the accuracy by 18.3%
and reduces the RMSE by 25.7%.

Given the above results, it is not surprising that the confidence intervals of the HBH
results in much lower coverage rates. Table S32 reports the differences in coverage rates
between HBH and our baseline. On average the coverage probabilities of the HBH are
56.2% lower than the baseline.

Interestingly, the results for Design 2 and horizon h = 0 clearly shows the condition
under which the HBH can perform well. Recall from Table 1 that in this case the IRs are
both informative and separable. Therefore, the cost of ignoring information from nearby
horizons is relatively small. However, when moving on to horizon h = 1, the HBH fails to
correctly identify groups as IRs are noiser. In stark contrast, the baseline GLP effectively
weights across horizons.

In conclusion, the evidence shows that grouping IRs horizon-by-horizon would lead to

18



imprecise group estimates and IR estimates. More importantly, the confidence intervals
would be exceedingly short. As a consequence, existing methods in grouping coefficients are

unlikely to correctly group impulse responses.
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S3 Empirical application

S3.1 Data description

o Housing prices. The benchmark model is based on monthly MSA level house price
index from Freddie Mac, which includes N = 382 MSAs from January 1975 to March
2019. The price index is a seasonally adjusted repeated-sales index, normalized to be
100 in December 2000. The level index is transformed into monthly growth rates by

taking log differences, and is expressed in percentage terms.

o Macroeconomic variables. The macro variables used in benchmark model are monthly
series of Fed Funds Rates (FFR), industrial production (IP), consumption expenditure
(PCEPI), and real estate loans at all commercial banks (REALLN), all of them from
FRED database, and 30-year fixed-rate for mortgage products (FRM30), collected
from Freddie Mac. The weekly FRM30 series is averaged to monthly data. IP, PCEPI
and REALLN are transformed into monthly growth rates in the same way as house

prices.

o FExternal instruments. The benchmark instrument for the monetary shocks over the

period 1991:1 to 2009:12 is the informationally robust instrument in 7.

o MSA economic profiles. MSA-level economic data, including per capita personal in-
come (dollars), population (thousands of person), and total employment (thousands of
jobs) are 2017 figures obtained from the MAINC30 from the US Bureau of Economic
Analysis (BEA). The real GDP per capita in 2017 is obtained from MAGDP10. The
and house price elasticity is provided by Saiz (2010). Household debt-to-income ratio
is from Ahn et al. (2018). Precise ratio is not accessible. Instead, we obtain the high

and low range of the ratio.
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S3.2 Determining the group number of housing responses

To start with, Figure S1 shows that the information criterion is minimized with two groups
(é = 2). However, as is discussed in Section 6.3, the information criterion may under-select.
Therefore, I consider also the distinctiveness of the estimated IRs to help select the group
number.

Comparing Figure 3 and Figure S2, specifying G=3 separates Group 2 (mild negative
responses) into groups with muted responses and negative responses, while keeping the
positive responses largely unchanged. If we further increase the group number to four,
however, Figure S3 shows that the IRs become less distinguishable, e.g. between Group 2
and Group 3.

Therefore, we choose three groups as our baseline case. Importantly, the group patterns

discussed in Section 7.2 hold under two or even four groups.

S3.3 Determinants of the group structure of housing responses

To formally examine the relation between economic factors and group membership, I estimate
a multinomial logit model on the estimated group assignment.

Table S33 presents the results with three groups (G = 3). First, the signs of the estimated
coefficients are fairly stable across all models, and they are consistent with the analysis in
Section 7.2. Specifically, the first two columns suggest that the probability of belonging to
Group 3 relative to Group 1 is significantly lower as real GDP or employment increase. In
words, Group 3 are generally poorer and have less employment.

Second, columns (3)-(5) show that an MSA is more likely to be classified into Group 1
when the debt-to-income ratio is higher and when housing markets are less elastic. Moreover,
the relation holds even when income levels are controlled for.

Finally, Table S34 shows that when we increase the group number to four (G = 4) the

group partition exhibits a similar pattern as described above.

On the whole, the evidence supports the qualitative analysis in Section 7.2. That is, rich,
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populated and indebted regions (Group 1) are likely to have house price appreciation after a
tightening monetary shock. Moreover, reducing household debt-to-income ratio significantly
increases the probability of having mild price responses (Group 2), whereas reducing the

income level strongly increases the probability of large price depreciation.

S3.4 Alternative specifications

In this section I discuss the results excluding the lagged dependent variables as controls.
For ease of notation, I call the benchmark model as FE and this alternative specification is
labeled as FE

To start with, Figure S6-Figure S8 show that the estimated IRs are similar to the bench-
mark, albeit in smaller magnitudes. Moreover, Table S35 reports the economic profiles under
FE’ As we can see, the group pattern under this alternative specification captures the same
economic forces. Specifically, Group 1 with positive IRs is: 1) richer and more economically
developed; 2) more populated; 3) more regulated and inelastic in the housing markets; and
4) more indebted (compared to Group 2).

As for the number of groups, Figure S5 shows that the information criterion is again
minimized at G = 2. As is discussed in Section $3.2, the group patterns hold under difference
choices of the number of groups: MSAs with positive IRs are generally more economically
developed, housing markets are more regulated, and debt levels are higher.

Importantly, the group partition still cannot be recovered by simple external criteria.
For example, Figure S11 replicates Figure 4 under FE’. As we can see, the poorest MSAs in
Group 1 are unambiguously distinct from the poor MSAs in Group 3. Besides, the richest
10% MSAs, though now resembles the responses of Group 2, have much moderate responses
compared with Group 1. Hence, income level fails to recover the documented group pattern.

As a whole, the analysis shows that the main results in Section 7.2 hold under this

alternative specification.
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S3.5 Horizon-by-horizon grouping

We now examine the stability of the estimated group structure by estimating latent groups
horizon-by-horizon (hereafter HBH). Four observations stand out.

First, as we can see from Figure S12, the HBH generates Group IRs that are qualitatively
similar to our benchmark case (hereafter BASE). Specifically, it separates 1) Group 1 with
positive IRs, 2) Group 2 with muted responses, and 3) Group 3 with negative IRs. However,
now the IR estimates are highly jagged, as they are contaminated by horizon-specific noises
(Barnichon and Brownlees, 2019). In fact, when comparing the estimates, Group 3 (HBH)
has IRs around twice as large as Group 3 (BASE).

Second, compared to BASE, HBH yields much narrower confidence bands. Notice how-
ever, these bands generally have very low coverage rates as is illustrated in Section S3.5.
Consider for example Charleston city of West Virginia. Figure S13 reports the impulse re-
sponses given by the individual LP-IV (IND), HBH and BASE respectively. Although the
IND IRs tend to be positive before turning into negative for longer horizons, they are in most
cases insignificant. The HBH keeps the sign and magnitude of the individual IRs largely
unchanged, but substantially reduces the confidence bands —by grouping nearby MSAs.
Moreover, there are several “breaks” in the HBH IRs that are hard to justify in economic
theories, and is likely to result from misclassification.

In contrast, the BASE serves as a middle ground between the IND and HBH: First, it
preserves the shape of the IRs. Second, it effectively takes into account the large confidence
bands of the IND. As a consequence, the the IRs are not only more moderate but also free
of “breaks”.

Third, Figure S14-S18 report the group assignments for horizons h = 1,6,12,18,24.
As we can see, the group structure is highly unstable across horizons; see for example the
clusters in Florida. In fact, 80.4% of the MSAs change their group membership across
horizons, among which 27 MSAs switch between Group 1 and Group 3, leading to breaks in
IR estimates. The reason is that (a) IRs are hardly distinguishable around h = 0, and (b)

IRs in the longer horizons are noisy, as illustrated in Figure 2, and grouping based on those
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horizons alone can be imprecise.

Finally, Table S36 shows that group patterns of our baseline results generally hold under
this alternative specification. For example, Group 1 with positive IRs are generally more
developed. However, the documented patterns are also unstable across horizons. For ex-
ample, at horizon h = 1 there is a U-shaped relation between population and IRs, which
converts into a monotonically decreasing relation for longer horizons. Similar patterns can
be found for housing supply elasticity and debt-to-income ratios. The unstable relations
between economic characteristics and the impulse responses are likely to result from the
reasons discussed above.

Overall, the results demonstrate that estimating group IRs horizon-by-horizon can repli-
cate some patterns of our baseline method, but the estimates are subject to noises and thus
unstable. Moreover, modeling group structure horizon-by-horizon yields unusually small
estimated standard errors. In light of the simulation evidence in Section S3.5, researchers

should be cautious in using and interpreting horizon-by-horizon grouping results.
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S4 Proof of Theorems and Propositions

It is useful to present here some (in)equalities:

la’b| < |l 0], for a,b € R", (25)
| Ab|| < || A]| = ||b]] for Ae R™" beR", (26)
la’ Ab| < ||a| = || Al * |16, fora e R, Ae R™" beR", (27)
|AB|| < | A]| = ||B]l, for Ae R™" BeR™" (28)

where ||a]|? = tr(ad’) = Y7, a? for a = (ai,...,a,), and |A|]*? = tr(AA) =57 S a? .,
=1 J=1 "1,g

=1 "

for A = [a; ;)i j=1...n- Moreover, for any conformable matrix A and vectors a, b, we have
a'Aa — V' Ab = (a —b)'A(a — b) + 2b"A(a — 1) (29)

All the inequalities can be easily derived using the Cauchy-Schwarz inequality.
Notation. For notation convenience, summations are taken over all possible values unless
otherwise stated, e.g. >, = Zthl- Moreover, consistent with the main text, we denote the

following moments:

_zr,i = % Zf:l Zi,tx;,ta dzz,i = ]E[Zi,tl‘;,t]

7zc,i = % 23;1 Zi,tcg,p dzc,i = E[Zi,tcg,t]

_zy,i,h = % Zthl ZitYit4-h) (30)
jze,'i,h = % Zthl Zi,tﬁgﬁh, Aoeih = ]E[Zi,tGi,tJrh]

A oVl 7
Mzc,i,h = Qi,h - Qi,hdzc,i(d

~ 43 A
zc,iQ@hdZCvi) d’, 2 h

zc, it o,

Mzc,i,h - Qi,h - Qi,hdzc,i(d/ 'Qi,hdzc,i)_ld/ Q, h

2C,0 zc,i" ",

Then we can rewrite the individual objective function (equation (5) in the main text) as

Qirn (B> Gin) = 10, Qi ptigp, Mg = Aoyin — dowiBgin — doci®in - (31)
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The GLP estimator given some generic grouping -y is then

[— _/ — p—
ﬁ] h\Y Z dza: 7 c,i,h dzx K Z dz%iMzc,i,hdzy,i,h
ZES iESj
and for all ¢ = 1,..., N, the individual level parameter given £,

~ -1 _, ~ _ _
¢i,h(69,) (dzc ZQ’L hdzc z> d;cﬂ'Qi,h (dzy,i,h - dz:v,iﬁgi,h) .

Finally, we define an auxiliary objective function as below.

Definition 1. The auxiliary objective function is defined as

ANt (B, ¢.7) ZZQzTh Bgihs i)
with Qirn(Bg, n, din) = mg,hQi,hmz‘,h and

min = E[mzh] =E [Zitx;t (525% - Bgi,h> + Zz‘tC;t (¢?,h - <Z5) + Zz‘tﬁz't+h]
- dzm,i (ﬂg(;)?,h - 6gi,h> + dzc,z' (¢2h - ¢i,h)

Definition 2. For two collections of parameters 8 = (31, . ,BGl) and B = (f,. ..

with possibly different G; and G5, define the Hausdorff distance between them as

(B, B) = max{ o min 155~ 5. 185 - Aol

9€{l,..Ga} §E{1,.,G1} GellonGy) ge{LoGa)

Definition 3. We work with the following the neighborhood of 37 ,:
Ny ={Be0c:dn(8,8) <n} .

S4.1 List of all lemmas

I list all the relevant lemmas below.
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Lemma 1. Under Assumptions 1.B-1.E, for any v > 0, we have for any ¢ > 0

T
P <supi % > Zi Wiy — E[zi,tw;t] > V) = o(NT™?)
A (39)
P (Supi %; Zit€it+h|| > V) = o(NT?)
Lemma 2. Under Assumption 1, we have
sup sup ‘QiTh(ﬁ,@ — Qirn(B, q§)| =0,(NT™?), forallhe€O,...,H
i BeO, ped (39)

sup ‘QNT(/87¢a7) - QNT(/Ba ¢7 ,7)‘ = OP(NT_(S)

Lemma 3. Under Assumptions 1 and 2, and assume that the number of groups G° is given,
then the Hausdorff distance between the estimated group IRs and the true converges to zero

as both N and T go to infinity, i.e.

du(B,8°) 5 0. (40)
Lemma 4. Under Assumption 1, and for 5, such that max; || 5, — Byl = 0,(1), we have
max [|0i(5;) — é7all = 0p(1) - (41)

Lemma 5. Under Assumptions 1-2, with correctly specified number of groups G°. Then for

1 > 0 small enough, we have

sup sup 1{g;(8) # ¢} = 0,(NT ™) . (42)
BEN,, i

Lemma 6. Under Assumptions 1, we have

sup; dlzLiQi,hJIZ%i = sup; dz:v,iQi,hdz;r,i + Op(l)
sup; J;c,i()i,hcizc,i = sup; Ao i Qindoei + 0p(1) - (43)
Sup; leLiQi,hJZQi = Sup;, dzx,iQi,hdzqi + Op(l)
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Lemma 7. [Equation (1.7) in Merlevede et al. (2011)] Let {X;,¢ > 1} be a sequence of
strongly mixing real-valued and centered random variables. Assume that for some positive

constants, ci, co, C3,C4
(i) the mixing coefficient satisfies a(7) < exp (—¢17%);
(ii) tail probabilities sup, P(|X¢| > v) < exp (1 — (v/c3)™).

Then let ¢ = 222, there exists a positive constant C' such that for any A > 0 and r > 1,

)\2 —r/2 - ¢
P ( sup | ZXt = 4/\> <4 (1 + TTM) +4CTA " exp {_Cl CETC} (44)

1<s<T

where M = sup,., (E(X?) + 2., |[E(X:X,)]).

Lemma 8. [Corollary A.2 in Hall and Heyde (1980)] Suppose X and Y are two random
variables which are F- and H-measurable. If F||X||? < oo and E||Y||? < oo where p,q > 1

and p~! + ¢! < 1. We have
_p—1l_g—
Cov(X,Y) < 8| X[ Y]l (G, H)) (45)

Lemma 9. [Lemma A.2 in Gao (2007)] Let f(-,-) be a symmetric Borel function defined on
RY x RE. Let the process & be an L-dimensional strictly stationary and a-mixing process.

Assume that for any fixed 7 € RY, E[f(&1,7)] = 0 and E|f(&, &)+ < oo. Then

T T 2

Z Z f(€t7 55)

t=1 s=1

E <O(T?%) . (46)

REMARK S1. Lemma 1 is analogous to Lemma B.5 in Bonhomme and Manresa (2015). Since
the uniform convergence result holds for any 6 > 0, they work under the assumption that
there exists some positive number a > 0 such that N/T* — 0 and set 6 = a. In the large
N, T asymptotics we consider, i.e., % — K € [0,00), uniform convergence still holds when
we choose § > 1. Although the choice of ¢ is arbitrary, larger values of § necessarily requires

a larger sample size T' to ensure finite sample performance.
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REMARK S2. Lemma 2 follows closely Lemma 3 in Fernandez-Val and Lee (2013), which is
crucial in establishing the consistency of 8 in Lemma 3 and of ¢;; in Lemma 4. The key
step is (124), which shows that the uniform convergence rate is determined by sup; ||d..; —
Aoil, sUP; || decin|l and || — Qinll. Alternative assumptions can be made. For example,

Assumption B1(iv) of Su et al. (2016) assumes that

P (qu 1% — Qinll > 77) =o(N™1) (47)

which holds, if we use 2SLS weighting matrix Qi,h = %zi,tzgt, and apply Lemma 1 with § > 2.

REMARK S3. Notice that Lemma 3 is derived under the assumption that the true number
of groups is known. To prove Proposition 1, we would like to study the behavior of the GLP
estimator with G > G (the behavior when underfitting G < G? is assumed in the high-level
assumption 4.A). To this end, in Lemma ?7 we re-establish Lemmas 3 with G > G°.
Compared with the correct specification case, the difficulty arises from the fact that
the Hausdorff distance in Lemma 3 cannot be easily established. To see this, consider the
extreme case when we set G = N, then the model reduces to unit-level time series regression,
which slows down the convergence rate. Moreover, the mapping argument in Lemma 3 is
not applicable. Instead, we prove Lemma ?? which states that the estimation error of 3, is

uniformly bounded.

REMARK S4. Lemmas 8-9 are a set of results for strongly mixing processes, and the proof

is omitted.

S4.2 Theorem 1

Proof. The theorem contains two parts. The first part shows that the misclassification prob-
ability converges to zero. The second part shows that the GLP estimator is asymptotically
equivalent to the infeasible estimator under true grouping.

Part I: consistent group estimation. The last piece of Theorem 1 is the convergence of
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g to the true group assignment. Notice that

(48)

<P ( sup sup1{3(8) # ¢!} >0> +P(BEN,)

ﬁenl

SOP(NTié) + 0p(1)

where the last inequality follows from Lemma 5, which bounds the probability of misclassi-
fication given that § € N, and Lemma 3, which bounds the probability P (8 ¢ N,).
Part 1I: asymptotic equivalence. We want to show that B — ,é 2 0 where B is the

infeasible estimator defined by

(Iéa d;) = arg min QNT(B? ¢a ’70) . (49)
(B,9)€(0,2)

Notice that the individual parameters depend implicitly on ,5' , and I suppress the dependence

for notational simplicity. The infeasible estimator satisfies the first order conditions:

Z dzm ) (Jzy,i,h - Jz:c,iBg?,h - ch,iéi,h) =0
€S ) (5())

dlzc ZQ (Jzy,i,h - sz,i@g?,h - jzc,i&i,h) =0

For later use, let us denote the residuals of the auxiliary estimator by €;+yn = ¥itrn —

. B - T
x;tﬁg?’h — ¢ 1Qin and dgp = % > 2i1€i14n. The FOCs can then be rewritten compactly as
=1

Z dzz 7, Z hdze Z h — O dlzc zQi,hJZé,i,h - O . (5]‘)

€S

Moreover, let us denote 0 h 5gg,h — ngh and ¢§7h = qgm — élh Then by simple manipu-
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lations, we have
QANT(L§ {5 70) - QANT(B7 9’57 70)
=— Z Z [ 2y ik za:,iBg?,h dc z¢z h] i,h |: 2yih sz,iBg?,h - ch,iéi,h}
- N Z Z |:J,lzy,i,h - sz,igggyh zc z¢z h} i,h [ley,i,h - sz,iﬁgg,h - ch,iq;i,h:|
h %

1 - - - ! - -
:N Z Z [dzz,iﬁj?ﬁ + dzc,igb;'{h + dzé,i,h] i,h |: zx 2/8 + dzc,igbg,h + dzé,i,h]
h %

h
1 - - N - -
:N Z Z [dzx,ifggd?’h + dzc,i¢?,h:| Qi,h [dzx,iﬂgg’h + dzc,i¢gh:|

NZZ[leﬂ h+dzcz¢7,h:|/ zhdzezh (52)
h i

/

~~
=0

To show that the second term is numerically zero, notice that we can decompose it into

%ZhZ[ zx250h+dzcz¢lh] zhdzezh

_ (53)
= X2, Bl (Zzeso d, zQz’,hdzé,i,h) + a2 <d’zc19i,hdzé,z',h>
where by the FOCs (51) all terms inside the parentheses are zero.
As for the first term, let
Qb;kcfll = al"gmln AT Z Z |: 2T ’Lﬂ h + dzc z(bz h:| i,h [szx,iﬁi()’h + szc,i(ﬁi,h . (54)

¢zh
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Then the first term is lower bounded by

5 S [+ decitl] Qi [AewiBy  + el
> X [ w3 on T e i,h] Qi [dzm,iﬁggyh + dae, f‘;ﬂ]
= ¥ 20 22i By (Ao iMecindeoi) B, (55)
= Zh Zg g,lh (% 21650 dzac it zesi hdza: z) 55,h
doh Zg ||Bg,h - 5g,h‘|2f75],h = manﬁ”ﬁg,h - Bg,h”2pg,h

WV

where p, 5, is some positive finite number. Here, the first inequality is obtained by construc-

tion. The second last inequality follows Assumption 1.D and 1.F, under which

plim — Z .., i M .ipnd.p; = plim — Z d ..M iMecind.ei (56)

N, T—>oo 650 N—)oo 630

which as Lemma 3 shows is positive definite and thus lower bounded by its minimum
eigenvalue oo > p,, > 0. The last inequality follows from the fact that the summands

8o — Bonll2pgn are non-negative. Combining the two terms, we have

QNT(B; QBWO) - QNT(B; ¢, ") > Hglé}LXHBg,h - Bg,thpg,h (57)
and so it suffices to show that the LHS is 0,(1).

Notice that by the Lemma 3, we have P (3 € N,) % 1, under which Lemma 5 shows that

the misclassification error is 0,(1). Therefore, we have

sup | Qnr(B, #.49) — Qnr (8, 9,7°)| = 0,(NT?) . (58)
(B,9)eN,

It follows that
0< Qnr(B,6,7°) — Qur(8,$,7°)
= Qnr(B.90.9) — Qnr(B,$,%) + 0,(NT ™) . (59)
< 0,(NT™?)

Here, the first and the last inequality are obtained by construction: given on the true group-
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ing 7°, the infeasible estimator B is the minimizer, whereas given the estimated groups #
(by GLP), B is the minimizer.

To sum up, we have

0p(NT™?) > H;%X“Bg,h - Bg,h”2pg,h (60)

for some positive finite number p, ;,, which implies that ||3,4 — Bonl = 0,(NT=9) for all g
and h.

|
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S4.3 Theorem 2

Proof. To derive the asymptotic distribution, I follow Fernandez-Val and Lee (2013) to
expand the FOC to higher order. For later use, denote the first order conditions with known

group structure by

C(ﬁj,}w Bg h Z dzx i A zy i.h zz,iﬁj,h - ch,igb(ﬁj,h)) =0. (61)
ZGSO
and
EBjn, 0(Bin)) = _;c,in',h (Jzy,i,h — dowiBin — ch,icb(ﬁj,h)) =0. (62)

Expand (61) around parameters (37, and ¢(5J »), where ~ indicates that qb( '») solves (62)

given 37,. We have

0=(( ?J“ é( jo,h)> + g

3% (Bin = Bln) (63)

for some [ between ﬁgh and Bj,h. Multiply both sides by N;T', we have

d¢( ?}2;’( joh))| VNT(Bin — —/N;T¢(° 0 0 (64)

Therefore, the proof proceeds in three steps: First, we need to show that

d¢(82,, 6(89,)) |

7 R )Y (65)

8
Second, we need to show that
- d
N;TC(B7 1, 9(B4)) = N (KB, ;) (66)

The asymptotic normality of the infeasible estimator follows immediately from the first two

results. Finally, I show that the GLP estimator is asymptotically equivalent to the infeasible
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counterpart.

Part I. Taking the derivatives of (61), we have

d¢(80,,0(8%,)), )
dﬁ —__g) zxz Z:Ei_ Ze%)dzxz ZhdZClW‘E' <67>

Similarly, taking derivatives of (62) and evaluating at £, we have

.  0(8)
—d. ., Aoyi — d Qi pndoei——17=0 68
zc,i™ Yi,h zc,i® Y1,k 85 ’g ( )
Next by Lemma 6, we have (uniformly over i),
0= dzc zQz hdzxz dzc zQz hdzc za?—glﬁ
dlzc zQi,hdZﬁU,i + Op(l) - (017(1) + zc, ZQZ hdZC ’L>@|ﬁ (69)
99(B) ' /
- W|E (dzc ZQi,hdzc z) dzc zQi,hdza:,i + Op(l)
Substitute it back to (67), we have
dC( ?,haq;( ;'),h)) ‘7
dpg B
99(B)
7
Z dz:z: zQ’L hdzx g N Z dz:c P/ hdzczW}E'
1650 zeSO
(70)
=~ X7 Z dza: FALY/ hdsz,i Z dzr K hdlzc i dzc ZQZ hdZC Z) dlzc ZQi7hd'z$1i + OP<]')
1650 zeSO
:__Zdza” zczhdz:cz_l'op(l)
’LESO

which gives Part 1. Specifically, in the above derivation, the o0,(1) terms remain bounded
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because Lemma 6 holds uniformly over i. For instance, we have

1 7 & T
_FJ ZieSJQ dzac,iQi,hdzx,i

1 / 1 1 7 ..
—w; 2ies? Copillindeai + <—. 2ies? T il = 57 D e dzx,iQi,hdzx,i>

o (71)
< _NLJ ZieS? dlzx,iQi,hdzx,i + sup; <dzx ZQl hdzac g d/zx Z‘Qi,hdzx,i>
< _N%. Zies? d/zx,iQi,hdzo:,i + Op(l)
Part II. The FOC for the infeasible estimator evaluated at 37, gg(ﬁﬁh) gives
C( j('),ha Z dzx ) A ( zy,i,h T zm,iﬁ;{h - szc,iqg( ?,h))
zGSD
(72)
:_Zdzzz ZhdZCl< ?,h >+_Zdz:cz zhdzezh
zGSO zeSO

To derive the stochastic expansion of ¢(57,,, o( 5,)) we need to expand ¢, — gg(ﬂﬁh). First,

from the FOC of individual parameters (62), we have

A

0= 5( b ¢( )) dlzc 19 (Jzy,i,h - sz,iﬁ;{h - ch,iﬂg( ]O,h))

(73)
= Qupdecin + Ao Qindeci (80 — H(B%))
which gives the individual estimator
< ?,h - QE( ?,h)) - <dlzc 1Qi,h(jzc7’ﬁ> dlzc 1Qi,hcz267i7h (74>
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Denote O, = =d Qi,hczzc,i. By add and subtract, we have

ZCl

CZ Qz hdze Jih

zeyi,h 7 ze,t

o}
[ zczh zczh+ozczhi| X [ zc,i_dzc,i+dzc,i]/ X [Qi,h_Q h+thi| dzezh

/

ze,i, h zcz h + Ozc 4 hi| X [(szc,i - dzc,z')/ (Qi,h - Qi,h) + (ch,i - dzc,i) Qi,h

+ dzc,i (Qi,h - Q ) + dzc 1Qz h:| dZG’L h
(75)
~_ = /
= [Ozc%i,h - Ozcz ,h + Ozcz h} [(dzc,i - dzqi) inh
+ d.e;i (Qi,h - Qi,h) + dzc,iQi,hi| +0,(1)
_Ozclz h |:( _zci - dzc,i), Qi,h + dzc,i <Qi,h - Qi,h) + dzc,iQi,h] Jze,i,h + Op(l)

Consider the first term in the last equality. Multiply it by Ezgi,h we have

-1 - ! -
Ozc,i,h (dzc,i — dzc,i) Qi,hdze,i,h

/
1
zczh ( Zzl tczt ’Z’l tc;,t]) Qi,h (f Zt:zi,tei,t+h> (76)
/
:L(’)_l. LE:z»tc’- —Elzici ] | Qn LZz»tet h
\/T zcyi,h ﬁ - 1,0, 2,1t 1, ﬁ . 1,000+

where we have

1 1
— 2l — Elziic ] = 0,(1), — Zit€iran = O,(1 77
\/T; G — Elzici,] = Op(1) \/Tz t€iirn = Op(1) (77)

and thus this term is Op(%), we will formally show this later, since we need to sum over 1.

Now substitute A; + Ay + Az + 0,(1) back to the group-parameter FOC, and as before,
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in each step we “drop” terms involving two (or more) estimation errors:

(B D(B7n))

:_Zdle zhdzcz< ih >+_Zdz:pz ZhdZEZh

ZESO ZeSo

1
- - dezngzhdzcz(Al +A2+A3)dzezh+_zdzxz zhdzezh+0p(1)

J z‘eS? zGSO

Z lemﬁzh [[ — doei (AL + Ay + A3)} Aeeipn + 0p(1)

)
zESj

(78)

_ 1
-5

First consider

~ —

oy i = [y — Ao + de] [Qh Qi+ Qh]
= (i = i) (R = ) + (i — i) i
s (Qun = Qup) + L Qi+ 0,(1) (79)
= (dogi — dos) Qg+ dLy (Qh — Qh> +d, Qg+ 0p(1)

:Bl + BQ + Bg + Op(l)

Next, consider

.y i pecil A1 + Ay + As]
=(B1 + Bz + Bs)(dci — duci + duci)[A1 + Az + As] + 0,(1)

—=(By + By + Bs)(daey — duci + duei)[Ar + Az + As] + 0,(1) (80)
= (Bidzci + Badeci + B3(deci — deci) + Bsdie) [A1 + Ay + As] + 0,(1)
=Bid.e; A3 + Bd.c; As

+ B3(8zc,i — dyei)As + Bsd,e; Ay + Bsdye Ay + Bsdye i Az + 0p(1)
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In total, we keep nine terms, listed below:

Bid.cin = (Jza:,z‘ — dz:c,i)/ Qindacin

Bid,ciAsd.cin = (dspi — dz$,z) Q; hdzczOZCZ neeiQindoein

Badcip =d., ; (Qz‘,h - Qiﬁ) doein

BadeciAsocin =y (R = Q) decsOZ i Qinecin
BydeciAodecin .1 Qi deci O e (Vi = Qun) deci (81)
By(dsei — doci) Asdeein =iy Qip(doci — dzc,i)ozcz 1 zc,ifdi, naein

=3 ' 1 7 / =3
BSdzc,iAldze,i,h _dza; ZQi,hdzc zozcz h (dzc,i - dzc,i) Qi,hdze,i,h
_ , _
B3dze,i,h _dzx ZQi,hdze,i,h
_ , _
BSdzc,iAZ%dze,i,h _dzx 291 hdzc zOZC 4, hdzc,iQi,hdze,i,h

To finish the proof, we need to derive the asymptotic distribution of the above terms. We

first collect the terms by defining:

1 _ —
Bl :ﬁ Z BleC,i,h - BldzcﬂjASdZE,l’,h

J ieSQ
:_ Z zx,g T za; z / [Q Q hdzc zozc1 hdzc,iQi,h} C_lze,i,h
1680
N T2 Z Z Z <i txzt Ez;; t) M i n%is€isth (82)
ZESO t
Z BZ z€,i,h T Bdec 1A3dze i,h B3dzc 1A2dze ih
zESO
:_ Z dz;z; )i < Q > [I dzc zdzs 7 hOZC i hdzc,iQi,h] aze,i,h
1680
Z dzx 3o, hdzc ZOZC i, hdzc,i <Qi,h — Qi,h) aze,i,h
1680
:_ Z dzx 7, < Q’L,h) Q;;Mzc,i,haze,i,h
1680
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_ — Z dz:p i hdzc Zozcz S zcsi (Qi,h — Qi,h) 8ze,i,h (83)

zGSO

= — — Z Bg zed T zci)ASEZE,iJL

ZGSO

N Z dz;,; P h zci - dzc,i)ozc i, hdzc zQ'L hdze ,i,h (84>

zESO

B4 = - F Z B3dzc,iAlaze,i,h

J ieSQ

Z dzx PRI hdzc 102011 h (Cizc,i - dzc,i)/ Qi,haze,i,h (85)

ZESO

We now show that these terms are O(%) The proofs follow similar strategy and I derive

here for B;. Multiplied by /N;T', we have

VN,TB, = 1/2T3/2 Z Z Z Tiaziy = Biszfy) Mecinis€isn (86)

’LGSO 13

For notational simplicity, we define w;; = (xi,tzat — Exi,tzl’-jt) M,cin and m,s = 2i € sth-

Notice that since M, is nonstochastic, we have
Ew;; =E (ﬂthZZ{’t — Exi7tz§7t) M.in=0. (87)

We then rewrite B; as

\/ NjTBl 1/2T3 5 Z Z Z sz tTis 1/2T3 9 Z Z Z Wi t1i,s Ewl 7, S) (88)

zeSO t zeSO t

We then bound the RHS of the above equation. First, denote by ¢; some arbitrary nonrandom

vector with unit norm, we have

1/2T3/2 Z Z Z E U115 tZZ thc i, hzz s€i s+h}

zESO t
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1/2T3 9 Z Z Z |E LTt thcz h%i,s€i s+h] ’

zESO t
v N T Z Z Z ‘E Uit thc i,h%i,5€i S+h] —E [Ll‘xi»tzz{,thc,i,h] E [Zi,s‘si,erh”
zESO t
\/ NTZZZg leltzthZClh Zi,s€i,s+h (‘t-s’)l 2/q (89)
zESO t

where the last inequality is obtained by Davydov inequality. By Assumption 1.D and 1.E
we can set ¢ = 4(1 + J). Moreover, recall that M.,.;, is nonstochastic and finite so by
Cauchy-Schwarz inequality, only the moment bound for z;;2;; is needed. Combined with

Assumption 1.B, leads to >, > a(|t — s|)171/2+%) = O(T) and thus

N
1/2T3/2 ZZZE le%tzthzcthz s€i S+h} B Op ( ?]> : (90)

ZSO t S

Second, using a similar strategy, we have

2

1/2T3 9 Z Z Z Wz tTis — wz,tni,s])

i€s) t
N T3 Z Z Z Z Z E wz tMis — [Wi,tni,s]) (wi,mni,r —-E [wi,mni,r])
ZGSO t s
N T3 Z Z Z Z Z E (wi i swimir) — E [wienis] E [wimir]
i€s) t
T3 222228 wztnzs wzmnzr (|t_5_m_7ﬁ|)172/q . (91)
i€s) t

We can then similarly obtain and upper bound by Assumption 1.B, 1.D and 1.E that

2

1/2T3/2 Z Z Z 771 tfzs - 771 tfz s]) < Op(%) (92)

zESO i
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and thus

WW 5033 i~ Elabi]) = 0T ™) = (1) (93)

ZESO t

In conclusion, the bias term B; is dominated by the first term
K [(%’,tz;t - ]E$i,t21{7t) Mzc,i,hzi,sei,erh}

which leads to asymptotic bias. The remaining terms Bs, B3 and B4 are bounded similarly.
Having established the asymptotic properties of the bias terms, it remains to show the

asymptotic distribution. Specifically, we have

Z BB z€i,h T BSdzc ZA3dZE i,h

ZGSO
:_ E dzg; i 'L h T hdzc ZOZC i hdzc,iQi,h} dze,i,h (94)
zESO
SOOI
= 2,0 zczhzz t€; Jt+h
N,T 4= 2
ZESj

Assumptions 1.B, 1.D, 1.E and 3.A guarantee that we have

Z ZE X tzzt zczhzz s€i,s+h _> N(O ‘I]j h) (95)

v NTZESO S

by standard central limit theorem, e.g. Lemma 3 in (Hahn and Kuersteiner, 2011).

We are now ready to show the asymptotic distribution. Using (72), we have

VNTC(BY 0(B)4))
N;T(V+ By + By + Bs + By) + 0,(1)

(96)

with \/NjTV i> N(O, \Ilj,h>7 and \/NjT (Bl + BQ + 83 + 64) = O(\/NJ/T) Combined with

results from part I, the asymptotic distribution of the infeasible estimator follows.
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Part III. By Theorem 1, we have
. /N, NTz
VT (Bjn — Bjn) = 0p (#) : (97)

Under the assumption that N;/T = x; and N;/N = 7; with x; € [0,00) and 7; € (0,1), we

have

VN;NTz K2

e 98
which converges to zero if we set 6 > 2. This completes the proof. [ |
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S4.4 Proposition 1

Proof. We introduce some new notations in this section to discuss the group number selec-

tion. Specifically, we denote the objective function in the main text (4) by the following

{IB ) d) 7;)/6} = argnlin QNT(ﬁ? ¢> P)/) ) (99)

where the subscript G explicitly indicates the dependence on the number of groups. The
minimized objective is QNT’G = MINGco,,pcdy G QNT(B) ¢, 7). That is, we assume that
we can obtain the global minimizer.

To prove the proposition, let us consider two cases.
Case I: Under-select number of groups G < GO. By the definition of the proposed

criterion (15), we want to show that

P ériiélo QNT,G — QNT,GO + \QN,TQNT,Gmaz (G — GO)(H + 1)1 >0 —1. (100)

B0_, by 4.B

Ne. A0 ~G ~0
Note that by Theorem 1 and Lemma 4, we have 8 2 8 ,¢ 5 ¢ . Then by the continuous
mapping theorem, we have Qyr.co - Q.

Furthermore, by Assumption 4.A we have

i inf G 20>0° 101
i, Juf Qe 5 Q> Q (1o1)

and thus

Gﬂiiélo @NT,G - QNT,GO + QN,TQNT,GmM(G ~ G (H +1)

5Q — Q" +0,(1) > 0

and thus (100) holds.
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Case II: Over-select number of groups G > GO. By definition, we want to show that

GO<G<Gmaz

IP( min  IC0(G) > ](J(GO)) —1 (102)

It is equivalent to show that there exists some a > 0 such that

P | min T*(Qure — Qnree) + T onrQn1 e (G = GO)H +1) >0 = 1. (103)

~~

P00y, byd.B

Given that the second component converges to (positive) infinity, a sufficient condition for

the above is that

TYQnrc — Qnreo) = 0,(1) . (104)

However, it is generally difficult to compare GLP estimates with different number of groups.

Notice that by add and subtract, we can rewrite the above as
T*(Qnre — Qnr (8% 8°,7°) + Qnr(8°,8°,7°) — Qnrco) = O,(1) - (105)
Therefore, it is enough to show that there exists some a > 0 such that we instead show that
Ta|QNT,G(5> ®,7) — QNT(/B(): ¢0>’YO)‘ < 0y(1) . (106)
By Lemma 2 (notice that we have not used the assumption of G = G° in the lemma):

QNT,G(B) (ﬁa ﬁAY) = QNT,G(B: éa ﬁ/) + OP(NT_6)

R (107)
S QNT(/BO, ¢07 /70) + OP(NTia) = QNT(Bov ¢Oa ,YO) + OP(NTi(S)
and thus
‘@NT,G(;Ba ®,7) — QNT(ﬁOa ¢0770)| = Op(NT_6) (108)
[ |
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S5 Proofs of Lemmas

S5.1 Lemma 1

Proof. The proof for the uniform convergence of zivth’-t and z; €145, are almost identical,

and hence we focus on the former here. Denote by A; = T Zt it =

an L X K matrix. By Boole’s inequality, we have

P (sup > 17)

SngpIP’ (sz > D)

SNSQpP(ZZ‘Z
! Ik

4

ilk

:

1
<NLK Pl = A;
< stilp slu];p <‘ T zt: tlk

=T Zt Zi twm [Zi,twg,t]a

(109)

> ﬁ/\/m)

We would like to evaluate the RHS using Lemma 7. To do so, let us verify conditions (i) and

(ii) of the Lemma. First notice that A, = zi¢jwiex — Ezi¢w; e x is mean-zero, stationary

strong mixing with desired mixing coefficients by Assumption 1.B. So condition (i) follows.

By Assumption 1.C, the tail property (ii) is also satisfied. Therefore, Lemma 7 gives (where

Xy = Aiip, 4\ = To/V LK and r = T/?)

NLKsupsupIP’ (‘ ZAztlk

]

>\/ﬁ>

—NLKsupsupIP’ (‘ ZAztlk

]

>Ty/\/_>

VT2
VT2 e N 160VLK B
16LK M 7 oP|Ta

<NLK (4 (1 +

where M = SUP¢~0 (E(Azzt,l,k> + 2 Zs>t |E<Ait,l,kAis,l,k>|)'

(110)

VT \
403@

It remains to show the convergence rate of the RHS. We start by showing M < oo using
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the Davydov inequality from Lemma 8. Specifically, for s > ¢ and let p = g = 4(1 + 9),
1 1 _ 1
E{Ait,l,kAis,l,kz‘ <8 (a(s - t)) T2(1+9) (E [|Ai1,l,k|4(1+6)}) 2148y (111)

Then under Assumption 1.D (or Assumption 1.E when we consider A;; = 2 € 445), there

exists some finite positive number C' such that
E‘Ail,l,k|2 + 2 Z ‘EAit,l,kAis,l,k| S C Z (a(8>)172(11+6) < 0 (112)
s>t s>0

and thus M < oo.

Next we aim to show the following: for any 7 > 0, we have for all § > 0,

16LKM

_\/T/Q
) —0 asT — 0
(113)

T5%exp [—01 (@%) ] —0 asT — o0

Consider for example the first part. Denote v = ?/(16LK M). It is equivalent to show that
0InT — %\/Tln(l + VT"/?) converges to —oo as T — oco. Given an arbitrary v > 0, we have

In(1 4 vT"?) > 1 for sufficiently large T. Therefore, for sufficiently large 7,
1 1
SInT — 5x/fln(uyTl/?) < 61nT—§\/T (114)

and the RHS converges to —oo as T' — oo. Similarly for the second part, it is equivalent to
show that % exp [5 InT —T¢ ZV} — 0 with some arbitrary positive 7, v and ¢, which trivially
holds as ¢ In T — T/?v converges to —oo. Therefore, we have established that for any 7 > 0,

we have for all 6 > 0,

—\/T/Q c
[ ~2 / ~
16LKM 4desvV LK
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and thus

P (sqp

g

> 17) =o(NT™°) . (116)
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S5.2 Lemma 2

Proof. By definition, we have for any 5 € ©, ¢ € ¢

|Qirn(B, ) — Qurn(B, 0)|
:‘m;,hQi,hmi,h — 1y G |
=}, i — 1l it + 100, i, — mi S|

<

A~/ A ~ ~ ~
mi7h<Qi,h - Qi,h>mi,h‘ + |mi,h9i,hmi,h — mi,hQi,hmi,h|

~

m;h(th — Q)M — m;h(Qi,h — Qip)mip + m;h(th - Qi,h>mi,h‘

+ ‘(mzh — i p) Qi (M — M p) + 2m , Qs p (15, — mzh)} 1
S‘(mi,h — mi,h>/<Qi,h — Qi) (M —myp) + 2m;7h<Qi,h — Qi n) (M — mz’,h)‘ o
+ ‘m;h(Qi,h - Qi,h>mi,h‘
+ ‘(mzh —mip) Qi (i, — mi,h)‘ + 2‘m;7hQi,h(mi,h — mz’,h)|
<l = gl {190+ 12 — il
o 2lmi e = migll 19200+ 192 = Q]

+ lmanlPl1€0 — Qi

where we have repeatedly used the triangle inequality, the matrix identity (29) and the
matrix inequalities (27).

Next, we take the supremum oevr ¢ and g € ©,¢ € ®. Since both sides are positive,
it boils down to taking the supremum over for each individual terms. Let us examine each

terms separately. First, consider m; ;. Plug in the definition, we have®

mi,h(ﬁ? ¢) - E[mi,h(ﬁa ¢)] - E[dzy,i,h - dzm,iﬁ - dzc,i¢]
= E [Zitx;'t <ﬁ§g,h - B) + ZirCy (¢2h - ¢) + Ziteit+h:| (118)
dzx,i (ng,h - B) + dzc,'i ( ?’h - ¢) - dzw,i(egh - (9)

where with a slight abuse of notation, I write § = (5, ¢')". Taking the supremum gives, for

3T use here m; ;,(83, ¢) to explicitly indicate that the moment function is a function of 3 and ¢.
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allh=0,.... H,
sup sup ||min(5, 0|
i BeO,pcd

<sup |[dzu,i Sup_swp 165, — 0l : (119)

)

s(supEnzi,th,tn) (sup sup ||02h—e||)<oo
3 i PEO,peD

The first inequality follows from Cauchy-Schwarz inequality (26); the second inequality ap-
plies Jensen’s inequality to the expectation operator; the last inequality comes from As-
sumption 1.D and 1.A. In particular, Assumption 1.A states that the parameter space ©
and ® are compact. Therefore, there exists some finite constants oo > ' > 0 such that

Diam(0), Diam(®) < 4. Given (119), it follows immediately that

sup sup [lmin(53,9)[* < oo . (120)
i [EO,ped

Second, by Assumption 1.F the weighting matrix 2, ;, is finite positive definite, then there
exists some finite positive constant Cj such that sup; |[€2; 4] < C3 < co. Moreover, we also
assume that sup; ||, — Qinll = 0,(1).

Third, expanding m;, — m;  gives

mi,h(ﬁa ¢) - mi,h(ﬁy ¢) - (8211172' - dzw,i) (eg,h - 0) + dze,i,h (121)

Taking the supremum gives

sup sup ||[(Mp —min) (5, 0|
i BEOHED (122)

S sup “azw,i - dzw,iH sup sup Hezo,h - 9” + Sup Hd26,i,hH = Op(NT_(S)
i 1 B€6,pcP i

where the last equality follows from Lemma 1, and we again use the assumption that the
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parameter space is compact. Given (122), it follows immediately that

Sup; SUPgec@,pcd | (725, — M) (B, 05)”2

= SUp; SUPgeo,pcd ”(azw,i - dzw,i)(G?,h - ei,h) + dze,i,hHZ . (123)

< 2sup, Hazw,i - dzw,i||2 SUp; SUPgeo ged “9?,h - QHQ + 2||dz6,i,h||2 = OP(NTﬂS)

Now combine the results above, and taking supremum over ¢ and the parameter space

p €O, ¢pedof (168), we have

SUup; SUPgeeo, ¢cd ‘QiTh(ﬁgi,ha ¢i,h) - QiTh(ﬁgi,ha ¢i,h)|

< sup,Swbsce, oca It — mial® 120l + 1900 — Qunll
+25up;5uDsco, sco Iminl s = miall [10all+ W0es = all]
+SUp; SUPgseo, pea 212 — Qi nll

< Oy sup; || daw,i — dawill + Cosup; ||dueinl| + Cssup; [|Qin — Qinll

< (Ci+Cy+ C3)o(NT°) = 0,(NT ™)

where Cp,Cs,C5 are some finite positive constant and the last inequality follows from
Lemma 1.

Part II follows immediately:

sup |QNT(IB7¢77) _QNT(/Bv ¢7’7)‘

BEOG, PPN, ¥EG

< sup |% Z Z [QiTh(ﬁgi,lm Gin) — Qirn(Byins ¢i,h)] | (125)
i

 BEOG,pEDN 1EG

<H m}?xsup sup ‘QiTh(ﬁy(b) — Qirn(B, ¢)| < Hoy(1) = 0,(1) .
i PBEO, ped

o1



S5.3 Lemma 3

Proof. For notational simplicity, denote th = ﬁgo w — Bgn and qb,‘ih =

definition (35), we have

QNT(ﬁa ¢7 7) - QNT(ﬁoa ¢07 70)

1
:N Z Z [dzx,iﬂgh + dzc,i¢zh} I Qi,h [dza:,iBZh + dzc,i¢?,h] .
h i

Define ¢ to be the minimizer of the above objective function, i.e.

1
;i:;L = arg min — Z Z [dzx,zﬁgh + dzc,i¢gh} , Qi,h [dzawﬁzd,h + dzc,iqs;l,h}
h i

N

d
Pih

First order condition for this minimization problem gives
dlzc’z’Qi,h (dzz,zﬁgh + dzc,i leb) =0

and thus
-

2C,0

Using the definition of ¢} and the first order condition, we have

QNT(IB7 ¢a 7) - QNT(/607 ¢07 70)

1 N *
>N zh: zﬁ: [dza:,zﬁchh + dZC,i Zh} / Qi,h [dzx,zﬁgh + dzc,i ih}

1 1
:N Z Z(ﬁg?,h - ﬁgi,h) (dzgj’iMZQi,hde,i) (5‘2?@ - Bgi,h)
h i

:% Z Z Z Z 1{g) = g}1{g; = fl}(ﬁg,h — Bon) (dogiMcindas) (5S,h — Bn)
h &« g g

Qi,hdzc,i] - [d/ZCJQi,hdzx,i} th .

By

(126)

(127)

(128)

(129)

1
= Z Z Z(ﬁgh - 5@,11)/ N Z ]-{gzo =0,9; = g} (d;xyiMzc,i,hdza:,i) (BSJL - 6§,h)
h g g i

23 3 pminganll B9 — Banll®
h g g
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where M c;in = Qipn — Qindoei(d,, ;Qindoei) 1, Qi is defined as in Section 3 in the main

ze,i zc,i

text, and pmin gz,n is the minimal eigenvalues of % So. g =9g,9: =g} (d’ Mzc,i’hdmﬂ-).

2T,1

Next I show that ppinggn > p for some p, by showing that d;x,iMZC7i,hdZ$7i is positive

definite. Notice that by Cholesky decomposition €;;, = L;nL;;,, we can write it as

i _ U
dzx,i Mzc,i,h dza:,i = d

2T,

[Qi,h - Qi,hdzc,i(dl 'Qi,hdzc,'i)_ld, Q } dzz,i

zc,i zc,i” ish

= dlz$7iLi,h [] - L{L',hdzc,i(d;QZ‘Qi,hdzc,i)71dlzc7iLi,h} L/i,hdzm,i

== (L;,hdzx,i)/ Mzc,i,h (L;hdzx,i)
= <Mzc,i,hL;7hdzx,i>, <Mzc7i,hL;’hdzx,i>

(130)

where the last equality comes from the fact that MZC,M is idempotent. Specifically, we have

—
M, ., 1 M.cin

zc,i,h

= (I — L} deci(die;Qindeci) " i Lin) [T — Ly deci(die i Qindecs) L Li]

ze, zc, i, zC,l zc,i 7,

= I_L;hdzc,i(d/ 'Qi,hdzc,i)_ld, L'h_L;‘7hdzc,i(d/ 'Qi,hdzc,i)_ld/ 'Li,h

2C,0 zc,i77, zC,t 2C,0

+L;7hdzc,i(d, ‘Qi,hdzc,i)_ld/ Li,hL,'hdzc,i</ Qi,hdzc,i)_ld, 'Li,h

zc, zc,t i, ze,t 2¢,1

- .[ - L;yhdZC,i(d/

z2C,0

Qindoei) ' Lin

zc,i

Therefore, to show positive definiteness is to show that

MeoinLhpdons = [I = Ly pydci(de Qindeci) " dieiLin)] Lo

zc,t zc,t

(131)
= L;’hdzx,i - Lahdzc,i(d/

zc,t

Qi,hdzc,i ) -1 d ‘Qi,hdzcc,i

is of full column rank.
We prove this by contradiction. Assume that (131) is does not have full column rank,
then there exists a vector a # 0 such that

/ / !
Li,hdzw,ia = Lz’,hdzc,i(d

zc,i

Qi,hdzc,i) ! d/

2C,0

Qiyhdw,ia (132)

Observe that by Assumptions 1.D and 1.F, d’_,€; nd..; has full rank and invertible, and

2C,0
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ZCl ZCl

d,,.;Qind.y; is of full column rank. Then (d., ;€% hdzc,;)_ld’zc’iQiﬁhdmia # 0. As a result,

there exists some 7 # 0 such that
L;hdzx = LI hdzc iT - (133)

It follows that d.,; and d..; are linearly dependent, violating our rank condition 1.D. There-
fore, (131) is of full column rank and d/ZmMzc,i,hdzz,i is positive definite.
Notice that the above holds for any 7, and thus under any partition over i =1,..., N we

have pminggn = p > 0. Then we have

Qnr(B,¢,7) — Qnr(8°, ¢°,7°)
2 Z Z mhin Pmin,gg,h (Znﬁg,h - 6§,h||2>
g g h
} Z _; thin Pmin,gg,h ( (... ,GO}”ﬂO 5@”2)]

g

WV

| gef{L,....,GO} ge{1,.

Z _ max Inhinpmin,gg,h} L mm HBO Bﬁ“zl

> min  max 1N Ppyin s min 0 _ B
/g mip _max  mi pm] [ge{lﬁ_“w}nﬁg ﬁgn]
> max min max 1IN Prin. s mm 0 2. 134
/96{1,...,G0} |:,yeg §e{1,...GO%} h pmzn,gg,h:| |:§6{ ||5 69” :| ( )

There are five inequalities in (134). The first, the second and the fourth are obtained by

construction, i.e.,

1895 = Bawll> =22, (ming pringg.n) 185, — Banll?
189 — Bal> = minge,..coyl18) — Bz l1° (135)

MaXge(1,...,G0} MINy Pringgh 2 Miyeg MAXGe(1,.. G0} NNy Prin,gg,h

Zh pmin,g@,h

The third and the last inequalities follow the same logic: since each single elements in
the summation is positive, the summation is larger than any single element, including the

maximal one, i.e., > .a, > max;a; as long as a; > 0. Equation (134) implies that the
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auxiliary function Q(,@, ¢, ) is uniquely minimized at the true parameter values, since the
RHS is bounded away from zero.

The next step is to bound the LHS using Lemma 2. Specifically, we have

-~

QNT(ﬁ? év&) = QNT(ﬁ d) ) + Op( )

) (136)
< Qnr(B°,8°,7%) + 0,(1) = Qur(8°, 8", 1°) + 0,(1)
where Q is by definition minimized at (B, ¢?, 7). Rearrange terms,
0p(1) = Qnr(B. 6.7) — Qur(8°, ¢°.7") . (137)
Combining (134) and (137):
0p(1) 2Qn1(B,$,%) — Qnr (8%, °,7°)

> . . ) B 0 ~ 2 >

> ey (208 s | g 1< ] 0.3

Written compactly, we have

min 15— 651°] >0

0p,(1) > max |min  max  min pmin gz
i ge{1,...,G% | v€G §e{1,....G%} h 99, ge{

~~~~~

Since min,eg Maxgeq1,.., G0} Mily, Prmin,gg,n 1S strictly positive and finite, the above inequality

.....

implies

win_ 180~ G| (139)

()= |

.....

which proves half of Lemma 3.
Finally, we prove the remaining half of the lemma. First define for any given grouping ¢

the partition that minimizes the distance of IRs as

o(g) = argmin || - B2 (140)
ge{l,...,GO}
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We then want to show that the mapping o(g) : {1,...,G} — {1,..., G’} is one-to-one with

probability approaching 1 so that o(g)~! is well-defined. Notice that

BY— B2 = (B2 = Botg)) + (Bate) — Bo@) + (Bog) — BY)- (141)

By triangle inequality, we have

+ <||Ba<g) - Ba(g>|!2>é + <||Ba<a) - 53!\2>é (142)

(&

(189 = B91%)* < (182 = Bt ?)

1
2
(. /

g

op(1) on(1)

where the first and the third term on the RHS are 0,(1) by (139) and (140). Moreover, the
LHS is strictly positive as long as g # g by Assumption 2.B. Therefore, the above inequality

states that for any g # [, we have

||60(g) - Ba(l)||2> 0.

That is, with probability approaching to 1, o(g) # o(g) for all g # §. Hence, the mapping
o(g) is one-to-one with probability approaching to 1.
Now we are ready to look at the second part of the Hausdorff distance between 3° and

. We have for all § € {1,...,G"},

oty 150 = ol < 1Por = Boll s = min Mo = A = (1) - (143
by con;trruction - by (139)

~
by definition of o

The above inequality holds for all possible partition g, and thus
max min_18) = B51°| = 0,(1) (144)

i
ge{1,....,G % |g€{l,....G%}

Given (139) and (144), we have dg (8, 8°) 5 0 by definition. [
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S5.4 Lemma 4

Proof. By definition, we can write (;Bl-ﬁ(ﬁgi,h) as

Oin(Byn) = W+ (2o iQine ) & Qi [ B ), — B

(145)
+< z¢,0 zhdzcz> zc,i zhdzezh
Rearranging terms gives
||(£i,h(ﬁgi,h) - 2h|| S (dlzc ZQi,thc,z> dlzc zQi,hCsz,i [ﬂgg,h - /Bgl] H
+ <dlzc ZQ’L',hJZC,l> d{zc 1Qi,hd_26,i,h
N ) (146)
< | (Fesindees) || ¢ ||deeiinden]| X ||8% = B
+ <dlzc ZQi,hJZC,i> ) dlzc @Qi,hJZ€,i,h
Consider for example the first term, we want to show that
d/zc zQi,hdzc,i - dzc,iQi,hdzc,i S Op(1> (147>
By add and subtract, we have
d;C ZQi,thc,i - dzc,iQi,hdzc,i
= d;cz(Q Qi,h>dzc,i + J;C,iQi,h(ch,i - dzc,i) + (ch,i - dzc,i)/Qi,hdzc,i
(148)
S dlzcz(Qi,h - Qi,h>gzc,i ‘ dlzc 19 (dzc,i - dzc,i) + H(dzc,z - dzc,i),Qi,hdzc,i
[— 2 A p— p—
S dzc,'i Qi,h - Q ’ d;C ZQ dzc,i - dzc,i + ‘ dzc,i - dzc,i ‘Qi,hdzc,i

Taking the supremum over ¢ on both sides, by Lemma 1 and the assumption on the weighting

matrix 1.F, we have

d Qz hdzc X dzc,iQLhdzc,i

ZCZ

= 0,(1) . (149)

sup
i
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5 A _
d ‘Qi,hdzc,i

zc,t

Therefore, we have sup;, = O,(1). Results for other terms similarly follows.

Taken together, we have

By = Bas|| + 0p(1) = 0p(1) (150)

sup [|Gin(Byon) — 6]l < Op(l)sup‘

where the last inequality comes from the assumption that sup, Bgo w— Baill = 0p(1). [
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S5.5 Lemma 5

Proof. By construction, we have

9(B)=9 = ZQmL Byns Pin(Ben)) < D Qirn(Bgns din(B5n)) (151)

h

for arbitrary g, which implies

h

1{3:(B )_g}<1{ZQzTh (Boohs Din(Byn)) SZ n(Ban, Gin( ﬁgh))} . (152)

As a result, we have

1{9:(8) # 9;}
=> g # g}1{&(B) = g}

=3 1o = a8 = 9)

g g#g

<> max 1{g} = §}1{4:(8) = g}

< max 1{9z_99%9}1{ZQzTh5gh,¢zhﬁgh SZ Thﬁgh,@hﬁgh))}

h

Now let us focus on the last indicator function. The idea is to use Lemma 2 that

sup SUP ‘QzTh B,9) — Qura(B,9)| = 0p(NT™) (153)

i BEO, ¢

and the fact that the population objective function is uniquely minimized at the true pa-

rameter values. In order to do this, suppose there exists some A > 0 such that

A— Z Qirn(Bg.ns Gin(Byn)) + Z Qirn(Bgn, Gin(Ban)) < 0 (154)
h h
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The by probability algebra, we have :

1 {th Qirn(Byns in(Byn)) < th Qirn(Byn, éz-,h(ﬁg,h))}
{o < Z@Th By Gin(B5.0) Z@Th @qh,m(ﬁgh»}
<1 {A - zhj Qirn(Bg.n> Bin(Byn)) + zhj Qirn(Byns D (Bg.n))
< Z@m By Gin(Bg.n) Z@m ﬁgh,m(ﬁgh»}
=1 {A < (Z Qirn(Ban, Gin(Ban)) ZQm th,czzh(ﬂgh)))
(Z Qirn(Bo.ns $in(Byn)) Z@m ﬁgh,@h(ﬁgh)))}
<1 {A < Ehj |Qirn(Bg.ns din(Bgn)) = Qirn(Bgns Sin(Bgn))|
+ ; |Qurn(Byns Din(Byn)) = Qirn(Bosns bin(Bon) }}

<1 {A < QZ sup ‘QzTh B,0) — QiTh(ﬁbe)‘}

h B€O,pcP

Next we show that A does exists. Rewrite (154), we would like to find A > 0 such that

ZQzTh (Bys Din(Byn) ZQzTh By Pin(Ban)) > (155)

Add and subtract Y, Qirn (52

0 @75) to the LHS, the condition becomes

(Z QzTh ﬁg h;qbzh 6gh ZQzTh ﬁg h7¢z h))

(156)
+ (Z Qirn(BY 4, 001) — > Qirn(Ban, Qgi,hw@,h))) > A
h h

Therefore, the goal is to derive lower bounds for the LHS terms. Suppose 8 € N,. Since
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g? = g and g # g, we have

20 185 = Bou|
= Xu 1854 = Bon + Bon — Baul|
S 1850 = Boall = 2 11890 = B
> Y B0n = B0l =n=cs—n

(157)

A%

where ¢g £ minj, 2, (182, — 1,1l > 0 by Assumption 2.B. For sufficiently small , we have

> 1895 = Bonll = cg —n>0.

To apply the above result, notice that for individual level objective function Q;rx (8, ¢),

we have

Qirn(B,0) = Elzit(Yisrn — 27,8 — i O QUunEl2i e(Yigrn — 27,8 — ¢;,0)]
= (00, — O)Elziqw; ) Qi nElzi owi ](67), — 0) (158)

> pmin,i,huegh — 9”2 Z pmin,i,hHﬁggjh - BHQ

for generic 5 € ©,¢ € ®. Therefore, we have

ZQzTh (69 h7¢zh ﬁgh ) ZQ@Th 5g h7¢z h)
- Z Qirn <ﬁg,h7 éi,h(ﬁg,h)) -0
i (159)
> Z Pmm,i,huﬁg,h - ﬁg,hH > (mhm pmin,i,h) Z ||5<§J7h _ ﬁg,h”
" h

> (Hlfin pmm,i,h) (Cﬁ - 7]) .
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Similarly, for generic f3, Beo, ¢,g5 e ¢:

Qirn(B.¢) — Qirn(B, 9)
=031, — 0)Elziw] ) QunEl2iw],] (07, — 0)
— (004 — O)'Elzi 0w ) nE[2; 0] ] (69, — 0)
=(200, — 0 — 0)Elz;,w] )/ QunElzi !, )(0 — ) (160)
§|(292h —6— 5)’E[zuw;,t]’Qi,h]E[thw;,t](0~ — 9)‘
<||262 = 0 = 6 x |[BLzit, VB Lzl I x [18 = BIE + o - 911

<C; |18 =Bl + llé = 31|

where Cy < oo is some finite constant. To see this, observe that by Assumption 1.A the
parameter space is compact and thus bounded; moreover, by Assumption 1.D and 1.F,
B[z qw; ) nE[z; w7 ] s finite positive definite and thus its norm is bounded; these condi-
tions holds uniformly over ¢ and the parameter space.

Then by (160), we can derive the upper bound:

0 <ZQZT}L th7¢zh 5gh ZQzTh ﬁgh7¢zh)

<Ca ) (182 = Baall + 116ea(By) — 6] (161)

h

<Gy ) sup|ldin(Bzn) — dlnll + CaHn
h 7

where the first inequality comes from the fact that Q7 (5, ¢) is uniquely minimized at
(B2, #71), and the last inequality is obtained by the condition that 3 € A;. Therefore, we

have

Z Qirn (B ps bop) — Z Qirn(Byns din(Bon)) > —Co Z sup bin(Bsn) — OOl — CoHn
h h Rt
(162)
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Taken together, we have

<Z QzTh ﬁg h7¢zh ﬁgh ZQzTh Bg h7¢z h))
+ (Z QiTh(tha ¢?,h) - Z QiTh(ﬁg,ha éi,h(ﬁg,h))) (163)
h h

> <thlﬂ pmm,i,h) (cg —m) = C2 Z sup “Ggi,h(ﬂg,h) - ¢?,hH — CyHn)
h (2

It remains to show that the RHS is asymptotically bounded away from zero. Notice that
since we are conditioning on g = g and 8 € N, we have maxg || 35, — 5 || = 0p(1), which

satisfies the condition of Lemma 4. Therefore, we have for all h,
sup [|6in(Bg,0) — 24l = 0p(1) . (164)

Denote the event A, = {supi | Gin(Ban) — onll < 77} for any given n > 0. We know that

P(A,) = 1. Then conditional on A,, we have

(Z QzTh Bg h7¢zh 5gh ZQzTh /69 h7¢7, h))

<Z Q’Th gh7 zh ZQzTh /Bg h,¢1 h(ﬁg h))) (165)
> <m}}n pmm,i,h> cg—n <m}}n Prmin.ih + 202]{) 2AS0

where we use the fact that 0 < miny, pyin,in, Co < 00 by Assumptions 1.A; 1.D and 1L.F,

H < oo by Assumption 1.G. The last inequality holds if we choose a sufficiently small 7.
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Having established the expression for A under the event A,, we have

{Z Qirn(Byn: bin(Byn)) Z@m ﬁgh,m(ﬁgh»}
<1 {Z Qirn(Bon: Gin(Byn)) <> Qurn(Ba, Qgi,h(ﬁg,h))} 1{4,}
h h
+1 {Z Qirn (B, Gin(Byn)) < Z Qirn(Ban: &i,h(ﬁg,h))} 1{A7} . (166)
h h

{A<QZ sup |QzTh B,¢) — QiTh(ﬁa¢)‘}1{An}+1{A;}

n, P€O,0c®

h BEO,peD

<21 {Z sup |Qurn(8,9) — Qurn(B, )| = A/2} +1{47}

Plug this back into the misclassification indicator, we have

P sup supl{gZ %g?}>0>

BEN, i

<P | sup supZmax 1{¢? = 331 {3:(8) = g} > O>
BEN, i

<P | sup supZmaX 1{¢) = g}1 {Z Qirn(Byns i (Byn))

BeEN, i
Z Th ﬁgthbzh ﬂgh))} )

h

<G°(G° — 1) maxmax P (sup sup 21 {Z sup ‘le B,0) — QiTh(ﬁ,¢)| > A/Q}

9 979 BEN, i 5 BEO,pED

+ sup sup 1 {Ac} > 0)
BEN, i

<2G°(G° — 1) max max P (Z sup sup [Qirn(B,6) — Qirn(B, )| = A/2)

9 i [EO,ped

+2G°(G° — 1) maxrélggP <sup ||(Z§i’h(ﬁg’h) — <]§2h|| > 7])

g

<2G%(G° — 1) maxmax(o,(NT~) + 0,(1)] = 0,(1)

(167)

where the third and the fourth inequality comes from the Boole’s inequality, and the last
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inequality follows from Lemma 2, Lemma 4, and the Assumption 2.C that the number of

groups is finite. |
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S5.6 Lemma 6

Proof. The proofs of each terms follow the same logic, and hence here we show the proof for

the first term only. By simple manipulations, we have

7S 7 !
‘ Zm’iQi,hdzx i —d Qi,hdzm,i ‘

Z:B’l,

’ _;x’iQi,hCsz i dzx zQz hdzz K + d/ Qi,thm 7 d/ Qi,hdzm,i|

ZCL’Z Z"E’L

IN

’ _,,zx Z(Qz h — Qz h z;v z‘ + {dzgj PR thax,i - dzw,iQi,hdzz,i{

’ _;x,i(Qi,h - Qz h)dzac i dlzz 2(0 Qi,h)dzac,i + dlzm,i(Qi,h - Qi,h)dzac,i‘

+ ‘(dzx,z - dza:,i)/Qi,h(Jza:,i - dza:,z) + Qd;@z‘Qi,h(sz,i - dz:v,z)l

IN

(deei — Qo) (U — Qi) (dowi — o) + Qd;m(Qi,h = Qi) (dng — dugi)| (168)
+ ‘dm i Qi,h)dz:c,i‘

+ ‘(sz - dzx,i)/Qi,h(sz7i — i ‘ + Q‘dzxz n(dogi — dzm)|

i = el (192801 + 195 — il

o 2 M e = ol | 19250 + 12 = il

+ daall® 1€ — Qi

We have three terms on the RHS. Next we take the supremum on both sides and bound the

three terms separately.

Term 1.

D, e — el | 120l1 + 1925 = 1l
Dy | = il 5D, [1920]] + sy 12 = Q] (169)
< 0p(NT7?) (Op(1) + 0,(NT™?))

IA

A

by Lemma 1 and Assumption 1.F.
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Term 2.

D, el i = | 19201 + 12 = Q]

- X (170)
< 5D, [l 0D s = dall 121 + 112 = Qunll] = Op(1)op(1) = 0,(1)
where we use the full rank condition 1.D and result from Term 1.
Term 3.
sup; [|dzzi 2 Qi,h — Qin
Il A I )
< sup; ||l sup; [ — Qinll = Op(1)0y(NT )
where we use Assumptions 1.D and 1.F.
Combining the three terms, we
Supi (CZ;;B iQi,thm,i - dlzx iQi,hdzr,z)
R ’ (172)
< sup; ‘d;x,iQi,hdzz,i - d;;p,iﬂi,hdzz,i‘ = 0p<]-)
as desired. The proof for the other terms are almost identical. [ |
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Tables and figures

Table S1: Infeasible GLP Coverage Rates (%)

Design N

T

GO =2

GY =3

h=0

h=1

h=2

h=3

h=4

h=5

h=6

h=0

h=1

h=2

h=3

h=4

h=5

h=6

100
100
100
200
1 200
200
300
300
300

100
200
300
100
200
300
100
200
300

94.3
94.3
94.6
95.3
95.1
93.9
94.6
95.8
94.6

91.9
93.8
92.6
91.3
92.8
92.9
89.3
91.7
93.6

91.0
92.9
93.0
88.2
92.5
93.6
85.4
89.9
92.8

91.1
92.1
93.0
87.9
91.8
93.8
84.1
89.0
91.7

88.5
91.9
92.7
86.6
91.3
92.4
83.8
88.9
91.6

89.6
92.1
93.0
85.3
91.0
92.8
82.5
89.0
90.4

90.3
91.2
93.0
84.5
90.6
90.6
81.0
86.6
89.6

92.8
93.6
93.8
94.0
93.9
93.8
94.1
94.8
95.3

91.8
93.8
93.1
91.4
92.7
93.2
90.0
92.3
93.3

89.4
92.3
92.0
89.5
92.8
93.2
86.8
91.3
92.6

89.0
91.9
92.3
87.4
91.7
93.0
84.1
90.2
92.3

87.7
90.5
92.0
85.1
91.4
91.8
81.5
89.9
91.5

87.9
90.6
92.0
84.1
90.7
91.1
79.0
87.4
90.5

86.9
90.0
91.3
82.8
89.9
91.1
78.1
87.1
90.0

100
100
100
200
) 200
200
300
300
300

100
200
300
100
200
300
100
200
300

93.6
93.9
94.2
95.0
94.8
94.9
95.6
94.9
95.5

92.9
93.8
94.0
91.5
93.8
94.7
91.5
92.7
94.0

914
92.8
93.3
89.7
924
94.0
87.1
92.2
92.7

90.7
92.9
93.1
88.0
91.6
93.3
83.9
90.9
91.7

91.3
92.3
93.1
86.9
91.1
93.2
83.1
91.0
91.3

91.6
92.2
93.1
85.3
90.4
93.1
84.2
89.6
90.8

91.6
93.1
93.8
86.1
91.5
92.7
83.7
89.2
91.3

94.1
93.2
93.9
94.5
94.9
94.1
94.3
93.9
94.3

92.7
93.2
93.1
92.7
93.9
94.2
91.4
92.7
94.4

91.6
92.1
93.1
90.5
92.9
93.5
89.3
91.3
92.8

91.2
92.0
93.5
89.6
91.7
93.1
87.2
90.9
92.1

91.0
92.4
92.6
89.1
91.9
92.5
86.5
90.8
91.7

92.0
91.9
92.4
88.7
91.9
92.4
86.6
89.3
92.2

90.5
91.9
92.6
88.8
91.7
91.6
86.8
89.8
92.1

Note: Standard errors are clustered at individual level (Cameron and Miller, 2015).
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Tables and figures

Table S2

: Infeasible GLP Jackknife Coverage Rates (%)

Design N

T

GO =2

GY =3

h=0

h=1

h=2

h=3

h=4

h=5

h=6

h=0

h=1

h=2

h=3

h=4

h=5

h=6

100
100
100
200
1 200
200
300
300
300

100
200
300
100
200
300
100
200
300

94.0
93.3
94.6
93.5
94.2
95.2
93.1
94.1
94.6

93.3
94.8
93.9
94.0
94.9
94.9
93.4
94.7
93.9

94.8
93.6
94.4
93.3
94.3
93.8
93.3
94.3
93.9

93.3
93.9
94.3
93.4
94.4
94.7
92.5
93.6
92.9

92.8
93.9
94.3
92.7
94.3
94.4
91.5
94.0
93.5

92.5
94.1
94.5
92.6
94.0
94.7
92.2
93.6
93.7

92.3
95.1
94.8
92.5
93.4
95.0
92.3
93.3
94.2

93.7
93.9
94.2
93.5
94.7
94.9
93.3
94.2
94.5

93.4
94.9
94.2
93.9
94.3
94.7
93.1
93.9
94.4

93.2
93.8
94.2
93.1
94.3
94.7
92.2
93.8
93.9

93.0
93.6
94.1
92.8
94.2
93.9
92.6
93.7
93.4

91.4
94.4
94.3
91.6
94.0
94.2
91.5
93.7
93.4

91.6
93.9
94.2
91.4
93.2
94.4
91.2
92.9
93.1

91.2
94.1
94.4
91.1
92.8
93.6
91.1
93.3
93.5

100
100
100
200
) 200
200
300
300
300

100
200
300
100
200
300
100
200
300

93.7
93.3
94.5
93.4
94.4
95.4
93.3
94.2
94.8

93.4
94.7
94.2
93.9
94.4
94.9
93.3
95.0
93.7

94.0
94.1
94.1
93.8
94.2
94.0
92.7
93.7
93.5

92.8
94.1
94.3
93.3
94.4
94.7
92.5
93.7
92.5

92.8
94.5
93.9
92.9
93.7
94.9
91.1
94.1
93.5

92.2
94.7
94.3
92.2
92.8
95.0
91.5
93.8
94.5

92.3
94.9
95.2
92.5
93.5
94.6
92.3
93.8
94.1

93.6
93.9
94.2
93.7
94.7
95.0
93.7
94.5
94.6

93.5
94.9
94.7
93.8
94.6
94.2
93.4
93.8
94.5

93.9
94.0
94.3
93.2
94.2
94.6
92.2
94.0
93.7

92.9
94.2
94.6
92.6
94.9
94.5
93.1
93.7
93.4

92.4
94.5
93.8
92.3
93.8
94.8
92.0
94.4
93.7

92.6
94.1
94.9
92.3
92.8
94.6
92.0
93.8
93.8

92.3
94.3
94.9
92.0
93.0
94.3
92.8
94.0
94.3

Note: Standard errors are clustered at individual level (Cameron and Miller, 2015).
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Tables and figures

Table S3: GLP Jackknife Coverage Rates (%)

Design N

T

GO =2

GY =3

h=0

h=1

h=2

h=3

h=4

h=5

h=6

h=0

h=1

h=2

h=3

h=4

h=5

h=6

100
100
100
200
1 200
200
300
300
300

100
200
300
100
200
300
100
200
300

92.2
93.3
94.1
90.5
93.5
95.7
88.5
92.7
94.2

80.3
87.6
92.2
66.4
81.5
88.0
56.6
76.4
84.5

70T
89.5
93.8
62.8
85.2
90.9
53.0
79.1
88.1

80.0
89.7
93.2
64.8
87.3
92.9
53.9
81.8
89.9

82.8
90.9
94.0
74.0
89.0
93.1
64.1
85.4
91.2

86.7
92.6
93.6
79.6
90.6
94.2
78.4
87.7
93.0

89.7
93.5
94.2
87.2
92.2
94.5
86.8
92.0
93.4

91.3
93.7
94.4
90.5
93.3
94.4
88.5
93.1
94.7

72.3
84.6
90.7
53.3
74.3
84.9
42.0
64.7
80.3

69.4
82.7
89.5
49.1
70.6
83.7
37.1
61.1
76.5

71.5
84.3
89.5
53.3
73.7
84.0
42.8
63.3
78.8

74.9
85.3
90.5
62.5
77.0
86.0
51.7
67.8
80.4

78.3
87.0
91.2
66.7
80.2
88.0
60.6
73.6
83.3

81.1
89.6
92.1
72.3
82.9
89.4
65.7
77.2
86.4

100
100
100
200
) 200
200
300
300
300

100
200
300
100
200
300
100
200
300

93.6
93.3
94.5
93.2
94.5
95.4
93.0
94.1
94.8

93.5
94.7
94.2
93.9
94.4
94.9
93.1
95.0
93.7

94.0
94.1
94.1
94.0
94.2
94.0
92.8
93.7
93.5

92.7
94.1
94.3
93.2
94.4
94.7
924
93.6
92.5

92.8
94.5
93.9
92.8
93.7
94.9
91.3
94.1
93.5

92.0
94.7
94.3
92.4
92.8
95.0
91.6
93.8
94.5

92.3
94.9
95.2
92.6
93.5
94.6
92.3
93.8
94.1

94.2
93.9
94.2
93.5
94.8
95.0
93.4
94.5
94.6

93.5
94.9
94.7
93.8
94.5
94.2
93.4
93.8
94.5

93.9
94.0
94.3
93.3
94.2
94.6
92.3
94.1
93.7

93.0
94.2
94.6
92.8
94.9
94.5
92.9
93.7
93.4

92.4
94.5
93.8
92.2
93.8
94.8
92.0
94.4
93.7

92.6
94.1
94.9
92.5
92.8
94.6
92.1
93.8
93.8

92.2
94.3
94.9
92.2
93.0
94.3
92.6
94.0
94.3

Note: Standard errors are clustered at individual level (Cameron and Miller, 2015).



Table S4: GLP PERFORMANCE (T

= 50)

BR (%) RMSE (x100)
Design G N AC (%) GLP IGLP GLP PAN IND IGLP
100 74.0 178 177 431 354 1073 16.5
9 200 74.3 127 12.6  42.0 348 1235 14.2
300 74.2 104 104 419 34.7 1151 13.2
! 100 64.5 237 221 781 839 1381 27.2
3 200 64.3 169 158 772 834 179.0 23.6
300 64.4 13.9 13.0 76.6 832 220.7 221
100 97.0 182 178 125 232 626 9.7
9 200 97.0 12,9 127 112 229 69.5 8.0
300 97.1 105 104 10.7 228 65.7 7.4
2 100 96.2 222 215 174 378 816 14.7
3 200 96.2 158 154 15.0 374 1355 11.9
300 96.1 129 1277 141 373 978 10.8
Table S5: GLP PERFORMANCE (7T = 200)
BR (%) RMSE (x100)
Design G° N AC (%) GLP IGLP GLP PAN IND IGLP
300 92.8 8.7 8.6 182 328 434 4.2
9 400 92.6 7.5 7.5 183 327 434 3.8
500 92.7 6.7 6.7 182 3277 433 3.6
1 300 90.2 109 106 33.6 810 526 64
3 400 90.2 9.4 9.2 334 81.0 526 5.6
500 90.2 8.4 82 335 810 526 5.3
300  100.0 8.7 8.6 25 219 262 24
9 400  100.0 7.5 7.5 23 219 262 23
500  100.0 6.7 6.7 22 219 262 21
2 300  100.0 10.6  10.5 3.9 364 345 3.7
3 400  100.0 9.2 9.1 3.5 363 344 34
500  100.0 8.2 8.2 3.3 363 344 3.1
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Table S6: GLP PERFORMANCE (T = 300)

BR (%) RMSE (x100)
Design G° N AC (%) GLP IGLP GLP PAN IND IGLP
500 963 6.6 6.6 128 327 350 2.7
9 1000 963 47 47 127 326 350 22
1500 963 3.8 38 127 326 350 2.0
L 500 951 82 81 239 809 423 3.9
3 1000 951 58 57 239 809 423 33
1500 95.1 4.7 47 238 809 423 3.0
500 100.0 6.6 66 1.6 219 21.1 1.6
5 1000 1000 47 47 1.3 219 211 13
1500 100.0 3.8 3.8 12 218 211 1.2
2 500 1000 81 80 24 363 278 24
3 1000 100.0 57 57 20 363 278 19
1500 100.0 47 46 18 363 278 1.7
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Table S7: GLP COVERAGE RATES (%, T = 50)

Design G

N

GLP

IGLP

h=0

h=1

h=2

h=3

h=4

h=5

h=6

h=0

h=1

h=2

h=3

h=4

h=5

h=6

100
200
300

89.6
85.9
82.3

81.6
66.1
52.6

71.2
44.9
28.6

73.0
53.8
40.6

80.3
65.1
56.9

83.8
75.1
66.7

86.6
78.6
69.5

94.2
93.8
95.1

90.3
86.0
80.6

86.1
79.0
73.1

84.2
76.9
69.3

84.9
75.9
66.7

85.5
75.0
65.8

84.7
75.8
65.2

100
200
300

90.9
88.9
85.7

81.9
65.9
54.3

83.1
69.5
52.7

84.8
4.7
62.3

86.9
78.4
67.7

88.3
80.7
72.1

90.4
83.8
79.8

93.8
94.6
94.1

89.6
87.2
83.0

86.1
82.3
75.5

83.4
76.7
68.5

81.5
72.8
63.6

78.9
69.8
60.3

78.3
67.4
58.0

100
200
300

89.7
83.6
79.7

91.5
88.4
85.2

87.5
84.9
76.1

86.5
78.5
71.2

85.1
76.2
67.5

86.6
77.6
71.0

86.0
76.8
72.5

95.5
95.0
94.8

91.2
88.7
85.8

88.3
85.3
78.3

86.6
79.8
72.7

86.2
707
69.2

86.1
77.8
69.6

84.6
76.8
71.4

100
200
300

90.0
86.8
82.0

91.9
90.1
88.3

90.4
85.4
82.2

88.9
82.2
777

87.3
82.0
75.9

88.1
82.7
77.5

87.8
83.0
76.4

93.8
94.7
94.5

91.5
90.2
88.1

89.0
86.7
83.5

88.3
83.6
79.5

86.9
82.7
76.6

87.4
81.6
7.4

86.7
82.3
75.6

Note: This table reports the coverage probability of the large T inference as in Theorem 2.
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Table S8: GLP COVERAGE RATEs (%, T = 200)

Design G

N

GLP

IGLP

h=0

h=1

h=2

h=3

h=4

h=5

h=6

h=0

h=1

h=2

h=3

h=4

h=5

h=6

300
400
500

92.7
89.7
89.3

89.1
87.1
86.6

92.2
91.0
88.8

89.8
88.3
85.5

88.7
86.0
85.3

89.2
86.7
86.6

89.0
87.2
85.1

95.1
94.9
95.1

92.8
91.5
91.6

91.0
89.7
88.1

89.2
87.4
86.0

88.9
87.2
84.1

88.3
86.3
83.8

88.0
86.4
83.4

300
400
500

92.3
92.1
91.4

80.0
774
71.6

80.3
76.0
73.5

85.4
81.8
78.1

89.2
87.0
85.5

92.8
90.8
89.0

94.4
92.8
92.1

94.8
95.0
94.8

93.5
92.3
91.4

90.4
90.8
89.6

89.0
89.0
86.9

88.5
87.6
85.6

88.0
86.3
85.1

86.0
86.0
82.2

300
400
500

93.6
92.6
91.3

92.6
91.7
90.0

89.5
90.4
88.2

89.5
86.9
86.8

90.0
86.9
85.9

88.9
88.1
86.4

90.4
87.1
86.0

94.6
94.3
94.3

93.2
93.2
91.7

90.8
90.5
89.6

90.0
88.1
87.8

90.2
87.9
87.4

89.9
88.1
87.1

89.6
87.6
85.8

300
400
500

93.5
93.0
93.2

92.5
92.3
91.6

91.8
90.0
88.9

90.3
88.5
87.1

90.6
89.6
87.5

90.8
88.8
88.9

91.4
88.3
87.7

95.1
94.6
94.4

93.3
92.8
92.4

92.5
90.7
90.4

90.6
89.6
88.5

91.0
89.8
87.5

90.7
89.3
89.1

90.7
88.1
88.2

Note: This table reports the coverage probability of the large T inference as in Theorem 2.
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Table S9: GLP COVERAGE RATES (%, T = 300)

Design G

N

GLP

IGLP

h=0

h=1

h=2

h=3

h=4

h=5

h=6

h=0

h=1

h=2

h=3

h=4

h=5

h=6

500
1000
1500

91.9
89.1
87.0

91.0
87.2
80.7

95.5
93.7
92.4

91.8
89.9
86.4

90.6
87.1
81.1

90.5
84.2
79.2

89.5
82.5
774

94.0
95.2
95.4

91.2
90.4
86.3

89.5
85.9
81.4

88.7
82.9
78.1

87.4
80.8
75.7

89.1
80.2
74.3

87.6
78.6
72.9

500
1000
1500

93.2
91.6
89.5

84.4
75.3
68.2

85.1
76.3
70.1

88.3
80.2
74.1

91.0
85.8
80.9

92.6
88.7
87.1

93.6
90.4
88.8

94.1
95.4
95.1

93.7
90.9
89.7

91.9
88.2
84.5

89.7
84.4
81.1

88.8
82.3
76.6

87.8
80.3
74.0

86.5
78.4
71.3

500
1000
1500

92.1
91.7
89.7

92.5
88.8
85.4

89.4
84.8
79.5

88.0
83.3
76.9

88.2
82.7
7.2

88.5
81.4
75.1

88.5
82.6
7.3

94.7
94.9
94.7

93.8
90.7
88.3

90.3
87.6
83.3

89.5
85.4
79.8

88.6
84.4
79.5

88.8
82.0
76.5

88.6
82.8
70T

500
1000
1500

93.2
92.5
91.6

92.7
90.9
86.5

90.3
87.7
84.9

90.2
85.9
82.1

90.9
85.3
81.2

90.4
85.6
81.1

90.5
84.7
82.0

94.3
94.2
94.7

93.4
92.3
89.7

91.6
89.2
87.8

90.9
87.7
84.4

90.6
86.3
82.2

90.3
86.2
82.0

90.6
85.0
82.7

Note: This table reports the coverage probability of the large T inference as in Theorem 2.
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Table S10: GLP wiTH UNKNOWN GROUP NUMBER (RMSE x100)

GO =2 GO=3

N 100 200 100 200 400 100 200 100 200 400
Design T 50 50 400 400 400 50 50 400 400 400
PAN 35.5 34.9 327 327 326 839 834 81.0 81.0 809
G=2 463 443 105 10.4 9.8 79.1 78.0 29.1 292 29.0
G=3 536 518 154 151 148 827 814 19.3 19.3 19.1
G=4 573 550 172 166 162 858 843 240 239 235
G=5 605 576 183 17.7 172 885 863 254 253 249
! G=6 629 599 192 185 18.0 904 87.9 262 26.0 25.7
G=7 650 614 199 191 185 919 893 269 265 26.1
G=8 666 630 205 196 19.0 935 902 27.3 269 26.5
IND 101.3 103.1 30.1 30.2 30.1 126.0 126.6 36.3 36.4 36.4
IC 1.0 10 20 20 20 20 20 31 30 31
PAN 232 229 219 21.9 219 377 374 363 363 363
G=2 129 11.5 2.7 2.0 1.5 238 226 174 171 17.0
G=3 249 232 82 78 76 184 161 4.1 3.1 2.2
G=4 286 267 95 90 88 326 300 106 99 95
) G =5 31.3 292 104 99 96 375 346 124 116 11.1
G=6 332 309 11.0 105 102 41.1 377 134 126 12.1
G=7 349 325 11.5 109 10.6 435 399 142 134 128
G=8 362 338 120 11.3 11.0 457 41.7 149 139 134

I

ND 619 648 181 182 182 898 81.7 239 239 239
IC 2.0 2.0 2.0 20 2.0 2.1 2.1 3.0 3.0 3.0

Note: This table reports the RMSE of the GLP with different supplied group number. Cells chosen by
the information criterion are in bold.
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Table S11: COMPARE WEIGHTING MATRIX: CLASSIFICATION ACCURACY (%)

G° =2 G’ =3
Design N T UH H U 2SLS IV UH H U 25LS IV

100 100  83.5 84.1 83.0 83.0 831 782 786 771 769 772
100 200  92.6 92.7 91.8 91.7 91.8 90.0 90.3 88.8 886 888
100 300  96.3 96.3 956 956 956 95.0 95.1 94.0 939 94.0
200 100  83.5 84.0 829 828 830 779 784 76.8 76.7 77.0
1 200 200 924 92.6 91.7 916 91.7 90.1 90.3 89.0 888 &9.0
200 300  96.3 96.3 956 956 956 949 95.0 94.0 939 94.0
300 100  &83.5 84.0 829 829 830 779 783 769 76.7 77.0
300 200  92.6 92.7 91.8 91.8 91.8 90.1 90.3 889 887 889
300 300  96.3 96.3 956 956 956 949 95.1 94.0 939 94.0

100 100  99.7 99.7 966 965 96.6 99.6 99.7 90.3 90.1 91.7
100 200 100.0 100.0 99.6 99.5 99.5 100.0 100.0 98.0 98.0 98.1
100 300 100.0 100.0 99.9 999 999 100.0 100.0 994 994 994
200 100  99.7 99.7 96.7 96.6 96.7 99.6 99.6 90.1 90.0 91.7
9 200 200 100.0 100.0 99.5 995 995 100.0 100.0 98.1 98.0 98.1
200 300 100.0 100.0 999 999 999 100.0 100.0 994 994 994
300 100  99.7 99.7 966 96.5 96.6 99.6 99.6 &899 &89.8 91.7
300 200 100.0 100.0 99.5 995 99.5 100.0 100.0 98.1 98.0 98.1
300 300 100.0 100.0 999 999 999 100.0 100.0 99.5 99.5 99.5

Note: This table reports the classification accuracy of the GLP estimator with different weighting schemes. UH,
H, U, 2SLS, IV indicate unit-and-horizon specific weights, horizon-specific weights, unit-specific weights, two stage
least squares weights and IV weights respectively. Cells with the highest accuracy are in bold.



Table S12: COMPARE WEIGHTING MATRIX: RMSE (x100)

A

G Design N T UH H U 25LS IV PAN IND IGLP

100 100 30.0 29.6 304 30.7 30.5 335 63.7 10.0
100 200 19.0 18.9 199 199 199 329 433 64
100 300 13.6 13.4 145 145 145 328 350 5.1
200 100 294 29.1 30.0 30.2 30.1 332 638 738
1 200 200 18.8 18.5 196 19.7 19.6 328 434 4.9
200 300 13.2 13.1 142 142 142 327 350 38
300 100 29.2 28.9 298 30.1 299 331 638 7.0
300 200 184 183 193 194 193 327 433 4.2
300 300 13.0 129 140 14.0 139 327 350 3.2

2 100 100 71 6.5 102 10.2 10.1 223 386 5.8
100 200 42 3.9 51 49 49 220 262 38
100 300 32 31 35 33 33 219 211 31
200 100 59 53 94 93 92 221 385 46
2 200 200 33 3.0 45 43 43 219 262 29
200 300 24 2.2 28 26 26 219 211 22
300 100 55 48 93 92 91 221 386 4.1
300 200 29 2.6 42 40 40 219 261 25
300 300 2.1 1.9 25 23 23 219 211 19
100 100 52.0 52.6 53.2 53.6 535 816 775 15.0
100 200 343 34.1 359 358 356 812 525 9.5
100 300 24.8 24.5 266 264 263 810 423 75
200 100 51.9 522 529 533 532 8l5 775 120
1 200 200 33.7 33.5 351 351 349 810 524 7.0
200 300 246 24.3 263 261 26.1 81.0 423 5.6
300 100 51.6 519 52.7 53.0 529 814 775 108
300 200 33.6 33.4 351 351 349 81.0 525 6.1
300 300 244 24.2 262 260 259 81.0 423 4.7
3

100 100 103 9.6 17.7 178 16.2 36.8 50.6 9.0
100 200 64 6.1 88 87 86 365 344 6.0
100 300 50 4.8 6.0 58 58 364 278 438
200 100 86 7.8 16.8 169 15.1 36.6 50.7 7.0
2 200 200 49 45 78 17 76 364 344 44
200 300 38 3.6 50 49 48 363 27.8 3.5
300 100 7.8 6.9 165 16.7 147 36.6 506 6.2
300 200 43 39 74 74 72 363 344 3.7
300 300 33 3.0 46 44 44 363 278 29

Note: This table reports the RMSE of the GLP estimator with different weighting schemes.
UH, H, U, 2SLS, IV indicate unit-and-horizon specific weights, horizon-specific weights, unit-
specific weights, two stage least squares weights and IV weights respectively. Cells with the
lowest RMSE are in bold.
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Table S13: COMPARE WEIGHTING MATRIX: BAND RATIOS (%)

G =2 GY'=3
Design N T UH H U 2SLS IV IGLP UH H U 2SLS IV IGLP

100 100 14.5 159 153 156 158 157 17.7 203 186 19.1 19.5 19.3
100 200 14.3 150 14.7 149 150 148 17.5 188 18.0 183 184 18.1
100 300 14.2 14.7 145 146 147 145 174 182 17.7 180 181 17.7
200 100 10.3 11.2 108 11.0 11.2 11.2 12,5 144 132 136 13.8 138
1 200 200 10.1 10.6 104 105 106 10.6 12.3 13.3 127 13.0 13.1 129
200 300 10.1 104 10.3 103 104 103 12.3 129 126 12.7 128 12.6
300 100 8.4 92 88 90 9.1 92 10.2 11.8 108 11.1 11.3 11.3
300 200 83 87 85 86 87 8.6 10.1 109 104 10.6 10.7 10.6
300 300 8.2 85 84 85 85 85 10.0 10.5 103 104 104 104

100 100 14.6 159 153 158 16.0 157 17.9 195 190 196 19.8 19.0
100 200 14.3 150 147 149 150 148 17.5 183 180 183 184 17.9
100 300 14.2 147 145 146 147 145 17.4 180 17.7 179 180 17.6
200 100 10.4 11.3 109 11.2 113 11.2 12.7 13.8 135 139 141 13.7
9 200 200 10.1 10.6 104 105 106 106 12.4 13.0 127 13.0 13.0 12.8
200 300 10.1 104 10.3 103 104 103 12.3 12.7 125 127 127 12.6
300 100 85 92 89 9.1 9.3 92 104 113 11.0 114 115 11.2
300 200 83 87 85 86 87 8.6 10.1 10.6 104 10.6 10.7 10.5
300 300 8.2 &85 84 &85 85 85 10.0 104 10.2 10.3 104 10.3

Note: This table reports the band ratios of the GLP estimator with different weighting schemes. UH, H, U, 2SLS, IV in-
dicate unit-and-horizon specific weights, horizon-specific weights, unit-specific weights, two stage least squares weights and
IV weights respectively. Cells with the lowest band ratios are in bold.




Table S14: COMPARE WEIGHTING MATRIX: COVERAGE RATES (%, DESIGN 1, G° = 2)

N T Weight h=0 h=1 h=2 h=3 h=4 h=5 h=6

UH  -140 -23 58 -85 -6.0 -47 -26

H -26 -1.3 -32 -51 -24 -09 0.7

U 11 31 41 -86 -7.6 -47 -14

100 o918 22 12 54 -105 -85 -42 -04
IV 23 03 -46 -79 -63 -25 09

IGLP 949 921 921 90.0 89.7 892 894

UH 68 -09 01 04 -12 -1.0 -05

H 00 01 1.9 1.5 0.6 06 1.4

U 10 04 13 06 -03 -05 05

100 200 ogrs 04 -15 04 -03 -01 -05 14
v 05 -13 1.1 03 -01 -04 13

IGLP 941 932 932 925 922 928 924

UH 20 -05 04 14 -01 -05 07
H 05 0.2 1.8 28 1.3 1.3 20

U 04 00 17 24 09 04 09

3000 o918 00 21 20 23 1.1 04 18
v 00 -16 20 25 11 09 20

IGLP 937 935 930 923 933 927 926

UH -262 -61 -11.3 -13.6 -104 -7.5 -4.4
H -40 -45 -7.4 -9.8 -6.9 -2.5 0.9
U 17 27 -89  -17.5 -133 7.2 -3.7
100 o918 42 48 -132 -21.1 -157 -81 -2.3
IV 42 -33 -11.0 -180 -132 -66 -1.1
IGLP 940 904 879 866 860 86.6 86.7

UH -142 -14 20 -1.2 -09 -18 -1.1

H -26 -09 23 08 0.6 1.0 0.5

U 07 01 28 10 -14 -02 -1.1

200 200 9918 26 -64 0.7 27 -20 -0.1 0.0
IV 24 57 08 21 -15 00 00

IGLP 951 928 909 91.1 90.0 89.6 90.9

UH -85 -11 14 09 -12 -1.3 -1.1

H -13 06 21 26 15 0.8 1.2

U 03 01 27 21 06 -03 -01

3000 9818 09 34 13 18 06 07 1.1
IV  -14 33 12 21 04 09 12

IGLP 949 928 922 914 922 914 91.3

UH -358 -10.8 -182 -19.7 -125 -85 -3.8
H -85 -10.5 -16.6 -17.2 -9.4 -3.0 2.6
U 3.9 33  -17.3 -284 -187 -10.3 -3.8
100 o918 80 -87 -242 -352 -225 -12.0 -2.3
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1AY -t 74 215 -31.0 -186 -9.0 0.0
IGLP 950 896 86.7 839 812 81.6 798

UH -192 -48 18 -1.2 -29 =26 -21

H -26 -43 1.8 1.7 0.3 02 1.1

U 15 -1.0 25 -1.6 -40 -33 -18

2000 981,829 -120 -0.8 -3.7 -41 -36 0.1
v 29 -11.0 -07 -33 -31 -31 08

IGLP 959 931 898 898 889 885 887

UH -11.1 -1.3 17 -02 -1.3 -1.2 -12

H -12 -08 31 22 19 0.9 1.6

U 02 -08 32 16 -04 -07 -0.3

3000 9818 14 70 24 13 01 00 1.3
IV <10 -59 24 17 06 00 12

IGLP 949 936 929 925 9l.1 914 892

Note: This table provides the coverage rates for the infeasible GLP and the differences
between IGLP and the GLP.
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Table S16: COMPARE WEIGHTING MATRIX: COVERAGE RATES (%, DESIGN 2, G° = 2)

N T Weight h=0 h=1 h=2 h=3 h=4 h=5 h=6

UH  -140 -48 96 -7.9 6.3 -47 -3.8

H -07 -0.3 -0.2 -0.7 0.1 0.1 0.1

U 68 -46 -57 -40 -38 26 -1.8

100 o918 206 -1.6 -40 -1.9 -1.9 -05 -0.2
IV -188 -1.0 -32 -20 -1.1 -04 -04

IGLP 949 921 921 900 89.7 89.2 894

UH 62 -17 -38 -48 -23 -19 -05
H 00 04 0.1 -0.3 04 04 1.1
U 13 23 -38 -35 -15 -09 -02
100 200 ogrs 38 05 -04 -08 06 03 1.3
IV 33 08 -07 -07 03 03 14
IGLP 941 932 932 925 922 928 924

UH 42 -14 -30 -1.3 -12 -1.3 -0.6
H 0.2 0.3 -0.1 0.7 0.8 06 0.8

U 1.0 -25 -23 -08 -06 00 -02

3000 9818 01 02 -01 05 07 05 04
IV. -03 02 00 06 08 08 07

IGLP 937 935 930 923 933 927 92.6

UH 266 -5.9 -154 -158 -95 -7.4 -57
H -40 -06 -06 -1.5 0.1 -0.6 0.8
U  -93 -103 -12.8 -10.5 -6.0 -54 -3.8
100 ogrs 337 -37 -85 -63 -29 -1.7 -05
IV 321 -26 -69 -55 -1.7 -15 0.6
ICLP 940 904 87.9 866 86.0 86.6 86.7

UH -119 26 -82 -89 -58 -42 -28

H -05 04 03 -05 -0.6 -0.3 0.0

U 01 -48 -74 -64 -49 -38 -29

2000 200 9918 71 04 -06 -1.3 -15 -1.1 0.1
IV 66 03 00 -12 -1.0 -1.3 02

ICLP 951 928 909 91.1 90.0 89.6 90.9

UH 64 -19 55 56 -32 -22 -1.9

H -02 02 -09 00 06 -0.1 0.2

U 01 -50 -56 -40 -28 -1.8 -14

3000 9818 16 00 -1.1 -05 01 -02 0.1
IV 14 01 -12 -05 01 -01 0.1

IGLP 949 928 922 914 922 914 91.3

UH -37.1 -93 -21.6 -19.7 -13.9 -90 -6.3
H -42 -05 -20 -1.8 -1.4 -1.6 -0.5
U -132 -153 -185 -13.3 -98 -84 -6.0
100 o918 -446 -7.8 -12.7 -97 -44 -30 -1.7
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IV 428 -61 -104 -81 -43 -29 -1.1
IGLP 950 89.6 86.7 839 812 81.6 79.8
UH -164 -42 -11.4 -10.7 -83 -51 -3.2
H -1.3 -1.2 -0.1 -0.7 -0.7 -0.1 -1.5
U 09 -99 -108 -86 -7.1 -47 -39
2000 9818 .97 05 -15 -25 -19 -09 -1.2
IV 94 -01 -15 -21 -1.7 -08 -1.0
IGLP 959 93.1 898 898 889 885 887
UH -116 -31 -71 -52 51 -26 -2.2
H -06 -06 -0.2 0.1 -05 0.1 0.1
U 06 -80 -7.7 -47 -48 27 -28
300 o91s 26 -04 -06 -09 -0.7 00 -04
IV 25 -06 -04 -06 -0.7 00 -02
IGLP 949 936 929 925 911 914 89.2
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Table S17: COMPARE WEIGHTING MATRIX: COVERAGE RATES (%, DEsIGN 1, G° = 3)

N T Weight h=0 h=1 h=2 h=3 h=4 h=5 h=6

UH 81 -64 -28 -01 15 26 13

H 0.0 -45 -21 0.8 34 56 6.9

U 09 -1.1 =25 -1.7 14 43 43

100 o991, 01 -89 92 60 -1.1 25 48
IV 05 59 <65 -31 05 38 56

ICLP 949 921 921 90.0 89.7 892 89.4

UH 46 -34 -1.0 12 16 26 0.7
H -01 -23 -14 04 19 44 4.7

U 0.7 -16 -14 01 1.2 37 34

100 200 o818 07 81 -71 -41 -09 29 34
v 05 -61 -56 -28 00 36 38

IGLP 941 932 932 925 922 928 924

UH 21 -15 15 12 02 03 00
H 0.5 -02 1.2 1.7 21 25 3.2

U 08 -10 1.2 10 05 14 21

3000 9918 05 48 -23 -12 01 18 3.0
v 04 -40 -14 -04 05 24 32

IGLP 937 935 930 923 933 927 92.6

UH -163 -150 -97 -23 31 45 3.6
H -1.9 -14.8 -13.0 -45 3.0 7.8 11.2
U 01 -49 -114 -69 -08 52 7.1
100 o918 -17 203 -244 -194 -74 0.1 6.8
IV -18 -16.1 -205 -145 -43 2.0 7.7
ICLP 940 904 87.9 866 860 86.6 86.7

UH 93 -85 -35 -08 10 14 -0.9

H -11 -80 -73 -25 1.3 34 4.5

U 06 -41 -51 -33 04 20 31

2000 200 991,814 -17.0 -16.5 -11.3 -48 -04 23
IV  -13 -141 -134 -94 -27 1.1 38

ICLP 951 928 909 91.1 90.0 89.6 90.9

UH 45 -44 00 06 00 -04 -1.8

H 0.0 -25 -1.4 0.9 1.7 3.9 3.5

U 1.0 -1.9 -06 02 04 19 1.9

300 9918 01  -103 -7.8 41 -1.6 21 26
IV 01 -83 -66 -28 -07 28 31

IGLP 949 928 922 914 922 914 91.3

UH -250 -21.8 -156 -53 16 62 26
H  -47 -23.0 -20.2 -86 0.5 8.1 13.5
U 1.6 -7.9 -173 -11.0 -3.7 49 84
100 o918 43 264 -32.3 -297 -159 -3.0 6.0
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IV -39 -222 -280 -233 -109 -0.1 7.6
IGLP 950 89.6 86.7 839 812 816 79.8
UH -136 -11.8 -49 -02 09 1.2 0.0
H -2.9 -10.7 -9.9 -41 0.2 37 7.0
U 1.0 5.6 -74  -44 -10 27 49
2000 991,826 -23.0 -21.8 -17.5 -85 -1.2 4.4
IV 27 -197 -193 -144 -62 04 54
ICLP 959 931 898 89.8 889 885 887
UH 92 -57 -09 00 00 -14 -46
H -1.7 -45 -3.9 -05 1.4 3.0 4.3
U 08 -28 -32 -15 05 1.8 08
300 9918 -1.9 -136 -11.8 -74 -30 12 28
IV -1.8 -121 -102 62 -1.9 19 35
IGLP 949 936 929 925 91.1 914 89.2
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Table S18: COMPARE WEIGHTING MATRIX: COVERAGE RATES (%, DESIGN 2, G° = 3)

N T Weight h=0 h=1 h=2 h=3 h=4 h=5 h=6

UH -101 -36 -7.7 -64 -43 -38 -3.5
H -08 1.1 08 04 08 07 0.7
U -329 -53 -114 -109 -81 -6.3 -4.6
100 o818 426 -4.3 -11.6 -10.7 -7.1 -44 -2.9
IV =384 -22 68 -59 -25 -1.3 0.0
IGLP 949 921 921 90.0 89.7 89.2 894

UH 40 -08 -31 26 -18 -1.1 -06
H 06 1.1 1.1 1.2 1.1 1.2 1.0

U 85 -06 -1.8 -1.8 -12 -04 0.0

100 200 o818 -163 11 -03 -06 -02 07 0.7
IV  -145 14 02 03 06 11 05

IGLP 941 932 932 925 922 928 924

UH -12 -01 -14 -13 -09 02 0.0
H 1.3 1.0 10 1.3 1.0 1.5 1.1

U 1.8 00 -09 -05 -03 05 05

3000 9918 53 14 04 08 04 17 14
IV 47 16 04 1.0 07 15 1.2

IGLP 937 935 930 923 933 927 926

UH  -183 -48 -12.9 -11.8 -88 -6.7 -4.5
H -1.8 06 -06 -0.8 -0.6 0.1 1.1
U 429 -12.0 -224 -183 -14.5 -104 -7.8
100 o818  -51.8 -11.4 -254 -193 -132 -7.3 -34
IV <476 -7.2 -165 -11.2 -6.8 26 -0.7
IGLP 940 904 879 866 860 866 86.7

UH -75 22 -63 -59 -43 -23 -3.0

H 0.2 0.2 -04 -0.1 0.0 0.7 0.2

U  -134 29 50 -35 27 -20 -1.8

2000 2000 9918 237 02 -25 24 -13 -05 -08
IV =226 02 -1.7 -13 -06 02 -0.3

IGLP 951 928 909 91.1 900 896 90.9

UH 54 -14 29 -33 31 -15 -1.2

H -02 00 -01 02 03 05 0.7

U 42 230 -30 25 -24 -1.0 -1.0

3000 9918 -102 07 02 -06 -04 -01 05
IV  -100 08 -01 -03 -0.1 02 0.8

IGLP 949 928 922 914 922 914 91.3

UH -268 -7.7 -168 -162 -121 -84 -6.2
H -3.1 -0.8 -0.8 -0.9 -0.6 -0.4 -0.4
U =489 -20.7 -29.0 -23.1 -17.3 -13.0 -9.8
100 o918  -59.2 -19.3 -31.9 -246 -17.4 -112 -6.5
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IV -528 -14.1 -208 -149 -84 -40 -2.1
IGLP 950 89.6 86.7 839 812 816 798
UH -120 -34 -96 -7.6 -62 -42 -3.1
H -0.8 -06 -09 -1.0 0.1 -0.4 -0.1
U  -179 65 -91 -63 -46 -31 -25
2000 o81S  -30.0 -1.5 -46 -3.7 -1.9 -09 -1.0
IV 287 -10 -43 28 -15 -07 -04
IGLP 959 93.1 898 898 889 885 887
UH -7.0 25 -62 -50 -45 -26 -1.3
H -04 -03 -06 -0.1 -0.3 05 0.3
U 45 53 -58 41 -33 -22 -1.7
3000 9918 -11.7 02 -15 -08 -1.1 00 -0.1
IV -11.0 -02 -1.3 -04 -08 05 0.0
IGLP 949 936 929 925 91.1 914 892
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Table S19: COMPARE INFERENCE METHODS: BAND RATIOS (%)

G° =2 G°=3
Design N T LargeT Small T LargeT Small T
100 100 15.8 16.1 20.3 20.9
100 200 15.0 15.1 18.8 19.0
100 300 14.7 14.8 18.2 18.4
200 100 11.2 11.4 14.4 14.8
1 200 200 10.6 10.7 13.3 13.4
200 300 10.4 10.5 12.9 13.0
300 100 9.2 9.3 11.8 12.1
300 200 8.7 8.7 10.9 11.0
300 300 8.5 8.5 10.5 10.6
100 100 15.9 16.1 19.5 19.7
100 200 15.0 15.1 18.3 18.5
100 300 14.7 14.8 18.0 18.1
200 100 11.3 11.4 13.8 14.0
9 200 200 10.6 10.7 13.0 13.1
200 300 10.4 10.4 12.7 12.8
300 100 9.2 9.3 11.3 11.4
300 200 8.7 8.7 10.6 10.7
300 300 8.5 8.5 10.4 10.4

Note: This table reports the band ratios for Large T inference (Theo-
rem 2) and small T adjustment (Proposition ?7) respectively.
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Table S20: LARGE T INFERENCE COVERAGE RATES (%)

Design N

T

G° =2

G°=3

h=0

h=1

h=2

h=3

h=4

h=5

h=6

h=0

h=1

h=2

h=3

h=4

h=5

h=6

100
100
100
200
1 200
200
300
300
300

100
200
300
100
200
300
100
200
300

92.0
92.2
94.4
89.8
93.3
94.1
88.1
91.7
92.9

91.2
92.9
93.6
86.0
91.7
92.7
80.7
88.9
92.0

88.3
93.8
95.4
80.2
93.1
95.1
71.2
92.3
95.9

86.6
94.0
94.9
76.7
92.1
94.3
70.1
89.8
94.3

88.2
93.8
94.3
80.0
92.4
92.9
73.8
88.4
92.3

89.2
92.1
93.2
84.5
91.0
92.2
80.3
88.7
90.8

89.6
91.7
94.3
86.1
90.6
92.9
81.5
87.7
90.8

93.5
94.1
94.8
91.7
93.5
95.1
90.1
92.5
94.0

86.9
90.4
93.9
76.4
86.1
90.2
65.6
81.2
89.9

88.2
91.0
93.4
76.6
86.6
91.5
66.8
81.7
88.9

90.7
93.7
93.9
83.9
89.5
91.5
75.9
86.2
90.8

92.4
94.2
94.4
87.2
92.2
92.3
83.8
89.3
92.1

93.8
94.9
95.3
90.3
94.0
94.2
88.1
92.5
92.9

94.1
94.7
94.7
93.6
94.7
94.2
91.7
93.4
93.0

100
100
100
200
9 200
200
300
300
300

100
200
300
100
200
300
100
200
300

93.6
94.7
94.9
91.4
94.2
94.6
89.0
92.4
93.1

93.2
94.0
94.2
91.2
93.5
92.6
90.8
92.4
93.4

92.3
93.3
94.5
88.6
92.9
924
85.7
90.7
914

90.6
92.2
93.3
87.6
91.4
93.7
83.4
89.0
91.9

90.9
92.9
93.7
88.2
92.2
93.5
82.8
89.1
90.7

90.9
93.9
93.7
87.5
92.1
93.3
83.5
89.0
91.0

91.4
93.9
94.4
87.8
90.7
93.4
83.6
90.1
91.0

93.5
93.9
94.2
92.7
94.1
94.4
92.1
93.7
94.1

93.8
94.1
94.0
91.4
93.4
93.8
89.5
92.7
93.3

91.8
93.8
94.2
90.2
92.5
93.5
87.7
914
93.6

90.6
93.5
94.3
89.2
93.3
924
86.2
90.6
92.8

91.9
92.9
93.3
88.6
93.1
93.1
86.9
91.2
91.8

91.0
92.6
94.6
88.0
91.7
92.6
87.3
91.0
91.1

92.1
93.3
93.6
89.0
91.5
92.5
86.6
91.0
90.9

Note: This table reports the coverage probability of the large T inference as in Theorem 2.
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Table S21: SMALL T ADJUSTMENT COVERAGE RATES (%)

Design N

T

G° =2

G°=3

h=0

h=1

h=2

h=3

h=4

h=5

h=6

h=0

h=1

h=2

h=3

h=4

h=5

h=6

100
100
100
200
1 200
200
300
300
300

100
200
300
100
200
300
100
200
300

92.2
92.3
94.6
89.8
93.4
94.2
87.9
91.8
92.8

91.7
93.2
93.8
86.5
91.9
92.7
81.7
89.0
92.1

88.9
93.9
95.7
81.3
93.4
95.2
72.3
92.5
95.8

87.6
94.1
95.1
77.8
92.1
94.5
71.4
90.2
94.4

88.8
94.1
94.5
80.8
92.7
93.2
74.8
88.8
92.3

89.9
92.5
93.4
85.0
91.1
92.5
80.9
88.9
91.2

90.4
92.6
94.2
86.4
91.0
92.9
82.3
87.9
91.2

93.7
94.2
94.8
91.7
93.6
95.2
90.1
92.1
94.0

88.1
90.9
94.1
7.3
86.6
90.5
66.6
81.7
90.1

89.5
91.6
93.6
78.2
87.2
91.8
68.6
82.1
89.4

91.9
94.1
94.0
85.0
90.0
91.8
77.3
86.9
91.1

92.9
94.7
94.6
87.8
92.7
92.6
84.4
89.9
92.5

94.6
95.3
95.4
91.2
94.3
94.5
88.7
93.0
93.0

95.0
95.2
95.1
94.1
94.9
94.3
92.2
93.9
93.1

100
100
100
200
9 200
200
300
300
300

100
200
300
100
200
300
100
200
300

93.7
94.7
94.9
91.3
94.1
94.6
88.9
92.4
93.2

93.6
94.1
94.3
91.3
93.6
92.7
90.8
92.2
93.4

92.5
93.5
94.5
89.1
93.1
92.5
86.0
90.9
91.5

91.0
92.6
93.4
87.9
91.8
93.9
84.1
89.1
92.0

91.5
93.0
94.0
88.8
92.2
93.8
83.5
89.3
90.7

91.5
94.0
93.8
88.2
92.2
93.5
84.5
89.1
91.1

91.7
94.3
94.5
88.3
90.9
93.5
84.3
90.3
91.2

93.4
93.9
94.4
92.7
94.3
94.4
92.1
93.6
94.2

93.9
94.3
94.2
91.3
93.5
93.8
89.4
92.6
93.4

924
94.1
94.3
90.7
93.1
93.5
87.8
91.7
93.7

91.3
93.7
94.5
89.8
93.5
92.5
86.7
90.7
92.8

92.6
93.2
93.5
89.2
93.1
93.3
87.5
91.4
92.1

91.6
92.8
94.9
88.5
92.1
92.9
87.9
91.4
91.3

924
93.5
93.8
89.9
91.7
92.8
87.6
91.1
91.0

Note: This table reports the coverage probability of the small T adjustment as in Proposition ?77.
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Table S22: GLP PERFORMANCE (FIRST-DIFFERENCED)

GO — 9 GY=3
BR (%) RMSE (x100) BR (%) RMSE (x100)
Design N T AC (%) GLP IGLP GLP PAN IND IGLP AC (%) GLP IGLP GLP PAN IND IGLP

100 100  84.6 153  13.8 299 338 846 109 77.5 21,6 142 60.8 82.8 20039 16.7
100 200  93.2 14.7 133 188 33.3 54.7 7.4 89.6 201 134 375 825 108.8 10.9
100 300  96.7 145 131 132 332 437 6.0 94.7 195 131  26.7 824 53.2 8.6
200 100  84.8 108 9.8 288 334 87.0 7.6 771 155 102 60.1 82.6 671246 11.8
1 200 200  93.3 104 9.5 179 33.1 546 2.3 89.6 143 9.6 369 824 62929 7.6
200 300  96.7 102 93 126 33.1 43.7 4.3 94.6 139 94 263 823 53.1 6.1
300 100  84.7 8.8 81 28,6 332 85.3 6.2 77.0 127 83 599 825 4156.9 9.7
300 200  93.2 8.5 77179 331 547 44 89.7 117 79 365 824  250.7 6.3
300 300  96.7 8.4 76 124 33.0 43.7 3.5 94.7 11.3 7.7 261 82.3 54.3 5.0

100 100 98.5 153 13.8 85 223 50.1 6.2 97.8 188 16.6 122 36.8 65.3 9.8
100 200 99.9 14.7 133 46 220 314 4.3 99.8 180 16.0 7.1  36.5 41.8 6.7
100 300 100.0 145 132 3.6 220 25.1 3.5 100.0 177 159 56 364 33.4 5.4
200 100 98.4 109 98 74 220 70.6 4.4 97.7 134 119 101 36.5 64.4 7.0
92 200 200 99.9 104 9.5 3.4 219 314 3.0 99.8 127 115 52 364 41.8 4.8
200 300 100.0 10.2 94 26 219 251 2.5 100.0 125 114 4.0 36.3 33.4 3.8
300 100 98.4 8.9 8.0 6.8 22.0 123.0 3.6 97.7 109 938 9.2 364 70.6 5.7
300 200 99.9 8.5 7.8 3.0 219 314 2.5 99.8 104 94 45  36.3 41.8 3.9
300 300  100.0 8.4 7.7 21 219 250 2.0 100.0  10.2 9.3 3.3 36.3 33.4 3.2

Note: This table reports the classification accuracy (AC), the confidence bands ratios between the GLP and the individual LP-IV (BR), and the RMSE of
the GLP. GLP, PAN, IND and IGLP stand for the GLP, panel LP-IV, individual LP-IV and the infeasible GLP respectively. The infeasible GLP is group-
by-group using standard panel LP-IV where we know the true group structure beforehand. Classification accuracy and band ratios are in percentage terms,
and RMSE are multiplied by 100.




76

Table S23: GLP COVERAGE RATES (%, FIRST-DIFFERENCED)

Design N

T

G° =2

G°=3

h=0

h=1

h=2

h=3

h=4

h=5

h=6

h=0

h=1

h=2

h=3

h=4

h=5

h=6

100
100
100
200
1 200
200
300
300
300

100
200
300
100
200
300
100
200
300

93.1
94.8
96.1
91.4
94.0
95.4
88.6
93.1
94.7

91.3
96.3
97.1
85.1
94.8
96.6
79.2
94.0
96.0

91.5
95.7
97.3
84.6
94.7
96.2
75.8
92.5
96.3

95.4
97.0
96.8
93.9
96.0
97.2
93.1
97.1
97.1

94.7
96.5
96.4
95.9
96.8
95.8
96.1
95.9
95.9

94.3
97.0
95.6
94.3
96.2
97.3
94.1
95.1
95.8

94.8
96.0
96.8
94.5
95.5
97.0
93.3
95.0
95.6

97.9
97.9
98.0
97.7
97.9
98.3
97.1
97.3
97.6

96.2
97.3
97.4
91.7
96.5
97.0
87.5
95.1
96.3

974
98.3
98.2
95.2
96.4
96.7
92.8
95.1
95.5

98.4
98.4
98.1
97.8
98.0
97.3
97.6
97.2
97.2

98.6
98.2
97.9
98.4
97.8
97.5
97.9
98.3
98.3

98.5
98.3
97.8
97.9
98.2
98.0
98.0
98.1
98.3

98.3
98.1
98.4
98.5
98.5
98.2
98.6
98.1
98.3

100
100
100
200
9 200
200
300
300
300

100
200
300
100
200
300
100
200
300

95.0
95.0
96.3
92.7
95.8
95.9
91.9
94.8
94.7

93.8
94.7
95.7
91.3
94.7
94.2
89.1
92.8
94.0

94.8
95.3
95.7
93.8
95.4
95.4
93.1
93.8
94.9

95.8
95.9
96.3
95.7
95.8
96.2
94.1
95.8
96.3

95.6
96.2
96.0
95.6
96.8
96.1
96.2
96.8
96.6

96.8
96.3
95.8
97.1
96.6
96.1
96.4
96.1
96.1

96.9
96.5
96.5
96.3
96.8
96.7
97.1
96.5
96.9

95.0
96.3
96.2
93.2
96.1
96.3
92.5
95.2
96.5

95.2
95.4
95.6
92.9
94.5
95.6
91.7
93.3
94.2

95.3
95.9
96.3
94.8
94.8
96.0
93.5
94.6
95.9

95.8
96.6
96.5
95.2
95.6
97.0
95.6
95.5
96.4

95.7
96.8
96.2
96.1
96.7
96.2
95.7
96.3
96.1

96.5
96.9
97.3
96.6
96.4
96.4
96.3
95.8
96.6

96.5
97.2
97.3
95.9
96.4
96.3
96.2
96.1
96.5

Note: This table reports the coverage probability of the large T inference as in Theorem 2.
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Table S24: INFEASIBLE GLP COVERAGE RATES (%, FIRST-DIFFERENCED)

Design N

T

G° =2

G°=3

h=0

h=1

h=2

h=3

h=4

h=5

h=6

h=0

h=1

h=2

h=3

h=4

h=5

h=6

100
100
100
200
1 200
200
300
300
300

100
200
300
100
200
300
100
200
300

94.0
93.4
95.4
93.2
94.1
94.3
94.6
94.9
95.2

93.4
93.9
94.9
94.1
94.5
95.3
94.1
94.3
94.8

94.6
94.2
95.0
94.7
94.1
94.7
95.2
94.0
94.6

93.5
95.1
93.8
94.0
94.5
95.2
95.2
95.4
94.1

92.8
94.4
93.4
95.2
94.7
93.9
95.2
94.3
93.9

95.2
94.0
92.9
95.1
95.4
95.7
94.9
95.0
93.6

94.5
93.9
93.9
94.8
93.4
95.1
95.0
94.0
94.0

93.0
93.7
93.9
94.1
94.9
94.6
94.6
94.7
94.5

94.4
93.6
93.2
95.1
94.4
95.2
95.2
95.4
94.5

95.0
94.0
93.5
94.9
94.6
93.7
944
94.7
95.1

94.2
93.0
94.0
94.1
94.7
94.4
94.5
94.6
94.5

94.0
93.8
93.2
95.2
94.7
93.8
94.6
94.4
94.6

94.1
93.2
93.6
95.0
95.3
93.7
94.4
94.6
94.6

94.1
93.9
94.2
94.5
94.2
94.2
94.5
94.7
94.6

100
100
100
200
9 200
200
300
300
300

100
200
300
100
200
300
100
200
300

95.1
93.9
94.8
95.5
95.4
95.1
94.1
94.3
94.0

93.5
93.8
94.5
94.4
94.0
94.6
95.2
94.7
95.4

93.9
94.1
93.7
95.5
94.7
94.6
94.9
93.9
94.8

94.3
93.8
94.0
95.5
94.5
94.5
94.6
95.4
94.7

93.8
93.0
93.7
94.7
95.0
94.5
95.2
95.4
95.1

94.4
94.8
93.7
95.0
94.7
94.8
94.9
94.3
94.0

94.7
94.1
93.7
94.8
94.4
95.3
95.3
94.8
94.2

94.1
93.8
93.3
94.2
95.2
94.5
94.7
93.9
95.1

94.1
93.4
93.4
94.3
93.5
94.8
94.0
94.4
94.1

93.8
94.1
93.7
94.2
93.8
95.3
94.7
93.8
94.9

92.9
94.0
94.0
93.7
94.1
94.6
94.6
94.6
95.0

93.2
93.7
93.5
94.6
94.5
94.0
94.6
94.9
95.1

93.8
93.9
94.2
94.6
94.9
94.3
94.4
93.5
94.9

93.8
94.6
93.9
93.8
94.6
94.0
94.1
94.0
94.4

Note: Standard errors are clustered at individual level (Cameron and Miller, 2015).
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Table S25: COMPARE GMM CRITERIA

GO =2 GO =3
BR (%) RMSE (x100) BR (%) RMSE (x100)
Design N T POOL BASE POOL BASE POOL BASE POOL BASE

100 100  15.7 15.7 10.0 10.3 19.3 19.3 15.2 17.2
100 200 14.8 14.9 6.5 6.6 18.1 18.2 9.5 10.4
100 300  14.5 14.6 5.2 5.3 17.6 17.9 7.5 8.0
200 100 11.2 11.1 7.9 8.4 13.8 13.6 12.3 14.8
1 200 200  10.5 10.5 4.8 5.0 12.9 12.9 7.2 8.3
200 300 10.3 10.4 3.8 4.0 12.6 12.7 5.5 6.1
300 100 9.2 9.1 7.0 7.5 11.3 11.2 10.9 13.6
300 200 8.6 8.6 4.2 4.4 10.6 10.5 6.3 7.5
300 300 8.5 8.5 3.2 3.3 10.4 10.4 4.7 2.5

100 100  15.7 15.6 5.9 6.0 19.0 19.1 9.1 9.3
100 200 148 14.9 3.9 4.0 17.9 18.2 5.9 6.0
100 300  14.5 14.6 3.1 3.1 17.6 17.9 4.7 4.8
200 100 11.2 11.1 4.5 4.7 13.6 13.5 7.0 7.2
2 200 200 10.5 10.5 2.9 3.0 12.8 12.9 4.4 4.5
200 300 10.3 10.3 2.3 2.3 12.6 12.6 3.4 3.9
300 100 9.2 9.0 4.0 4.2 11.2 11.1 6.1 6.4
300 200 8.6 8.6 2.5 2.6 10.5 10.5 3.8 3.9
300 300 8.5 8.4 1.9 2.0 10.3 10.3 2.9 3.0

Note: Column POOL indicates the fully-pooled GMM criterion, Column BASE indicates the baseline GLP
criterion, and Column DIFF shows the difference.
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Table S26: COVERAGE RATES (%): FuLLy-PooLED GMM

Design N

T

G° =2

G°=3

h=0

h=1

h=2

h=3

h=4

h=5

h=6

h=0

h=1

h=2

h=3

h=4

h=5

h=6

100
100
100
200
1 200
200
300
300
300

100
200
300
100
200
300
100
200
300

94.4
93.4
92.6
94.2
93.7
94.5
94.1
93.8
94.2

92.5
93.4
93.3
91.1
92.6
93.2
89.1
92.6
94.6

90.5
91.9
93.7
88.4
92.2
92.5
84.8
914
91.9

90.2
92.2
93.2
86.9
91.3
91.6
84.0
89.3
91.6

90.8
92.2
93.2
85.6
90.8
91.9
81.4
89.0
90.2

89.0
92.2
92.7
85.2
90.3
92.0
81.8
88.7
91.2

89.9
92.3
924
84.1
90.4
90.8
81.9
88.9
91.0

93.4
93.8
93.9
93.9
94.0
94.2
94.7
94.2
94.3

92.4
93.5
93.7
91.1
92.7
93.7
91.6
91.5
93.6

90.0
93.1
93.8
89.1
914
93.2
87.4
90.9
92.4

89.8
92.6
92.5
86.7
914
93.1
84.2
89.9
91.8

87.9
90.9
92.0
84.3
90.8
92.5
80.6
88.2
91.6

87.1
91.1
91.6
83.8
89.9
91.1
78.9
87.3
90.6

87.5
89.8
92.1
82.2
89.0
91.5
77.1
86.4
89.9

100
100
100
200
9 200
200
300
300
300

100
200
300
100
200
300
100
200
300

94.4
93.8
94.1
95.0
94.4
93.6
94.3
94.3
94.1

92.9
92.7
94.4
92.2
93.7
93.9
914
93.5
93.3

91.7
93.2
94.2
90.5
92.8
93.4
86.9
91.0
91.7

90.3
92.9
93.3
89.1
91.2
92.5
85.4
89.9
91.4

90.3
93.0
93.4
88.0
90.8
91.3
85.0
89.6
91.8

91.1
91.3
92.7
88.9
89.9
92.2
83.1
89.6
914

90.4
92.8
92.5
87.1
91.2
92.2
84.6
89.9
91.8

93.5
93.8
93.9
94.8
95.0
93.7
95.1
94.2
94.5

92.5
93.2
93.9
93.3
94.2
93.6
90.8
93.5
92.9

90.9
92.4
93.0
90.6
93.0
92.4
88.6
92.4
92.6

90.6
92.0
93.0
88.6
92.3
93.1
87.2
91.1
92.5

90.3
92.5
93.2
89.8
91.8
93.3
85.6
90.7
92.2

90.5
92.7
93.5
88.1
91.3
93.4
85.9
90.5
92.1

90.4
92.9
92.8
88.2
92.2
92.7
86.1
91.1
92.1

Note: Standard errors are clustered at individual level (Cameron and Miller, 2015).
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Table S27: COVERAGE RATES (%): BASELINE GLP

Design N

T

GY =2

GY =3

h=0

h=1

h=2

h=3

h=4

h=5

h=6

h=0

h=1

h=2

h=3

h=4

h=5

h=6

100
100
100
200
1 200
200
300
300
300

100
200
300
100
200
300
100
200
300

93.5
94.2
93.7
93.8
92.8
93.3
90.6
92.6
93.7

91.8
93.9
93.7
89.5
91.7
93.0
85.6
90.3
93.2

89.8
92.6
94.1
84.7
90.6
91.7
80.8
89.8
90.6

89.6
92.1
93.2
84.2
89.7
91.0
78.7
87.2
90.4

90.0
92.3
93.2
83.4
90.2
91.2
78.1
87.6
89.6

88.7
92.7
93.2
82.8
90.1
92.0
79.0
87.1
90.0

89.5
92.5
93.1
83.5
90.7
90.4
81.3
87.0
90.3

94.5
94.5
95.0
93.3
94.0
94.0
92.5
93.7
94.0

91.1
94.2
94.6
87.9
92.0
93.6
87.5
90.0
92.5

88.2
92.3
93.9
83.8
89.3
92.0
79.4
86.6
89.6

87.1
91.8
92.6
79.3
88.3
91.2
73.6
84.4
88.1

84.3
90.1
91.6
76.7
87.3
89.8
69.7
82.2
87.1

83.8
89.0
90.9
75.1
85.7
88.3
67.9
81.1
86.2

83.2
88.0
91.2
73.8
84.0
88.9
67.0
79.8
85.8

100
100
100
200
) 200
200
300
300
300

100
200
300
100
200
300
100
200
300

94.1
93.4
94.4
93.1
93.8
93.3
91.4
92.7
93.9

92.1
93.3
94.6
91.1
93.5
94.1
89.5
92.1
92.7

90.7
93.2
94.3
87.1
91.7
93.0
82.9
88.6
90.6

89.8
92.0
93.8
86.8
90.8
92.1
82.0
88.3
90.9

90.3
92.6
93.6
87.1
90.3
91.4
83.0
88.3
91.1

91.0
92.3
92.9
87.8
90.3
92.2
82.6
89.3
91.1

90.4
93.1
93.1
87.2
90.7
92.1
83.6
89.8
92.0

93.4
95.2
95.0
93.2
94.6
94.0
92.0
94.1
94.1

92.8
93.9
94.9
92.0
94.2
93.4
89.5
93.1
92.7

90.9
92.7
93.8
88.9
92.1
92.5
86.0
91.0
92.1

90.4
92.8
93.5
87.4
91.8
93.4
84.4
89.2
91.9

90.8
93.2
93.7
88.4
91.7
93.3
84.1
89.7
92.1

91.3
93.6
94.5
88.6
91.2
93.2
85.7
90.2
92.1

91.6
94.1
94.1
88.7
92.5
93.0
85.1
90.9
92.2

Note: Standard errors are computed as in Theorem 2.
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Table S28: GLP PERFORMANCE (BIAS-CORRECTED)

GO =2 G'=3
BR (%) RMSE (x100) BR (%) RMSE (x100)
Desictn N T AC (%) GLP IGLP GLP PAN IND IGLP AC (%) GLP IGLP GLP PAN IND IGLP

100 100 84.1 15.8 157 29.7 336 638 10.1 78.4 203 193 527 816 775 149
100 200 92.8 150 148 189 330 434 6.5 90.2 18.8 181 343 812 526 9.5
100 300 96.3 147 145 134 328 350 5.1 94.9 182 177 25.0 81.1 424 7.5
200 100 84.1 112 11.2 290 332 638 8.0 78.3 144 138 522 815 776 12.0
1 200 200 92.8 10.6 105 184 328 434 49 90.2 13.3 129 338 811 525 7.2
200 300 96.3 104 103 13.0 327 349 38 95.0 129 126 243 81.0 423 5.5
300 100 84.1 9.2 92 288 332 639 72 78.3 11.8 11.3 521 814 777 108
300 200 92.7 8.7 8.6 18.3 328 434 4.1 90.0 109 106 339 81.0 526 6.3
300 300 96.4 8.5 8.5 129 3277 350 3.2 95.1 105 104 241 81.0 423 438

100 100 99.7 159 157 6.7 223 385 6.0 99.7 195 190 96 36.8 505 89
100 200  100.0 150 148 40 220 262 3.9 100.0 183 179 6.1 36,5 344 6.0
100 300  100.0 14.7  14.5 3.1 219 21.1 31 100.0 18.0 176 48 364 27.8 4.7
200 100 99.7 11.3  11.2 5.3 221 385 46 99.6 138 136 76 36.6 506 6.8
92 200 200  100.0 10.6  10.5 3.0 219 262 29 100.0 13.0 128 46 364 344 45
200 300  100.0 104 103 23 219 21.1 23 100.0 127 12.6 3.5 363 277 35
300 100 99.7 9.2 9.2 4.8 221 385 4.0 99.6 11.3  11.2 6.8 36.5 50.6 6.1
300 200  100.0 8.7 8.6 26 219 262 25 100.0 10.6  10.5 3.9 364 344 3.7
300 300  100.0 8.5 8.5 20 219 21.1 19 100.0 104 103 3.0 363 277 29

Note: This table reports the classification accuracy (AC), the confidence bands ratios between the GLP and the individual LP-IV (BR), and the RMSE
of the GLP. GLP, PAN, IND and IGLP stand for the GLP, panel LP-1V, individual LP-IV and the infeasible GLP respectively. The infeasible GLP is
group-by-group using standard panel LP-IV where we know the true group structure beforehand. Classification accuracy and band ratios are in per-
centage terms, and RMSE are multiplied by 100.
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Table S29: GLP COVERAGE RATES (%, BIAS-CORRECTED)

G° =2 G° =3
Design N T h=0 h=1 h=2 h=3 h=4 h=5 h=6 h=0 h=1 h=2 h=3 h=4 h=5 h=6

100 100 92.3 91.2 894 R86.2 86.5 87.5 &88.0 93.7 8.9 878 90.8 91.7 934 94.3
100 200 944 93.7 942 932 932 928 931 93.7 91.0 915 93.0 942 950 954
100 300 955 94.0 94.1 948 942 941 934 942 929 933 942 948 951 94.8
200 100 90.6 854 79.0 759 79.0 836 854 928 778 79.0 832 875 895 929
1 200 200 934 924 934 926 90.3 90.8 90.0 94.0 859 87.0 89.3 91.3 93.5 945
200 300 939 933 957 939 939 944 93.1 947 909 912 926 939 945 94.0
300 100 919 80.9 684 672 71.6 768 81.0 922 688 682 739 80.9 86.7 904
300 200 94.5 89.7 91.8 887 89.2 89.0 884 939 81.7 823 844 89.8 92.0 929
300 300 939 934 951 934 931 926 91.3 945 881 894 919 93.0 943 93.7

100 100 94.7 926 90.6 90.9 90.1 89.0 895 946 91.8 914 92.0 919 919 918
100 200 95.0 93.7 93.2 925 919 924 932 948 93.8 93.0 929 927 934 93.5
100 300 95.7 945 93.7 93.0 939 943 926 946 93.8 944 944 944 935 944
200 100 94.7 922 875 874 86.5 86.2 87.3 933 920 89.6 90.0 89.1 8834 894
9 200 200 94.8 921 915 91.3 91.8 904 925 944 93.0 921 921 91.8 91.5 91.0
200 300 94.5 939 922 923 924 932 919 942 933 933 93.1 933 929 93.0
300 100 94.2 89.0 855 84.0 84.0 845 841 947 903 8&88.0 &7.0 864 853 8&6.9
300 200 94.6 91.2 904 89.5 89.1 882 89.0 951 91.8 90.5 90.1 91.2 91.7 904
300 300 94.2 924 904 915 90.8 90.8 91.1 948 934 925 922 922 922 922

Note: This table reports the coverage probability of the bias-corrected GLP. The coverage rates are computed using large T infer-
ence as in Theorem 2.
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Table S30: GLP PERFORMANCE: HORIZON-BY-HORIZON GROUPING (G° = 2)

AC (%) BR. (%) RMSE (x100)
Design N T BASE HBH BASE HBH IGLP BASE HBH PAN IND IGLP

100 100 84.1 643 159 159 157 29.6 509 335 639 10.1
100 200 92.7 69.2 15.0 15.0 148 1819 357 329 434 64
100 300 96.3 722 147 147 145 13.5 285 328 350 5.2
200 100 8&4.1 639 11.2 11.2 11.2 289 508 332 638 7.9
1 200 200 927 69.0 106 10.6 10.5 185 355 328 434 49
200 300 96.3 721 104 104 10.3 13.1 285 327 350 3.8
300 100 84.0 63.8 9.2 9.2 9.2 28,8 50.7 331 638 7.0
300 200 92.6  68.9 8.7 8.7 8.6 18.4 355 328 434 4.2
300 300 96.3 72.0 8.5 8.5 8.5 13.0 284 327 351 3.2

100 100 99.7 655 159 17.0 15.7 6.4 287 223 385 5.9
100 200 100.0 68.1 15.0 16.0 148 3.9 20.2 220 262 3.9
100 300 100.0 69.7 147 156 14.5 3.1 16.5 219 21.1 3.1
200 100 99.7 65.0 11.3 121 11.2 5.3 286 22.1 385 45
2 200 200 100.0 676 106 11.3  10.5 3.0 201 219 262 29
200 300 100.0 694 104 11.1 104 2.3 16.4 219 21.1 2.2
300 100  99.7  64.8 9.2 9.9 9.2 4.8 286 221 38,6 4.0
300 200 100.0 67.5 8.7 9.2 8.6 2.6 201 219 26.1 25
300 300 100.0 69.2 8.5 9.0 8.5 2.0 16.4 219 21.1 1.9

Note: This table reports the classification accuracy (AC), the confidence bands ratios between the GLP and the in-
dividual LP-IV (BR), and the RMSE of the GLP. BASE stands for baseline GLP that groups all horizons together,
HBH stands for GLP that groups IRs horizon-by-horizon. PAN, IND and IGLP stand for the panel LP-IV, indi-
vidual LP-IV and the infeasible GLP respectively. Classification accuracy and band ratios are in percentage terms,
and RMSE are multiplied by 100.
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Table S31: GLP PERFORMANCE: HORIZON-BY-HORIZON GROUPING (G° = 3)

AC (%) BR. (%) RMSE (x100)
Design N T BASE HBH BASE HBH IGLP BASE HBH PAN IND IGLP

100 100 783 60.1 203 206 19.3 52.8 71.0 81.7 776 153
100 200 90.2 69.0 188 189 18.0 342 482 81.2 525 95
100 300 950 738 182 183 176 2477 376 811 422 7.6
200 100 784 597 144 146 138 52.1  70.7 815 776 12.0
1 200 200 90.3 687 133 134 129 33.6 481 81.1 526 7.1
200 300 951 736 129 13.0 126 241 375 81.0 422 5.5
300 100 784 596 11.8 11.9 11.3 51.8 706 814 775 10.9
300 200 903 686 109 109 10.6 33.5 480 81.0 525 6.2
300 300 950 734 105 10.6 104 242 3777 810 423 48

100 100 99.6 54.1 195 220 19.1 9.6 416 36.8 50.6 8.9
100 200 100.0 57.0 183 205 179 6.1 29.1 36.5 343 6.0
100 300 100.0 59.1 18.0 200 17.6 4.8 23.8 364 278 4.8
200 100 99.6 533 138 156 13.6 7.7 41.3 366 50.6 7.0
2 200 200 100.0 564 13.0 146 128 4.6 29.0 364 344 45
200 300 100.0 584 127 142 126 3.5 23.7 363 278 3.5
300 100 99.6 53.0 11.3 128 11.2 6.9 412  36.5 50.6 6.1
300 200 100.0 56.1 106 11.9 10.5 3.9 29.0 36.3 345 3.7
300 300 100.0 581 104 11.6 10.3 3.0 237 363 278 3.0

Note: This table reports the classification accuracy (AC), the confidence bands ratios between the GLP and the in-
dividual LP-IV (BR), and the RMSE of the GLP. BASE stands for baseline GLP that groups all horizons together,
HBH stands for GLP that groups IRs horizon-by-horizon. PAN, IND and IGLP stand for the panel LP-IV, indi-
vidual LP-IV and the infeasible GLP respectively. Classification accuracy and band ratios are in percentage terms,
and RMSE are multiplied by 100.
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Table S32: DIFFERENCES IN COVERAGE RATES (%, HBH-BASE)

G =2 G =3
Design N T h=0 h=1 h=2 h=3 h=4 h=5 h=6 h=0 h=1 h=2 h=3 h=4 h=5 h=6

100 100 -834 -6.2 -290 -71.6 -86.3 -88.6 -89.8 -79.5 1.0 -09 -22.7 -49.8 -60.8 -64.2
100 200 -85.7 15 -6.3 -45.8 -89.1 -92.7 -929 -80.3 4.1 1.2 -171 -51.3 -64.4 -67.2
100 300 -8.6 05 -22 -20.1 -796 -93.6 -93.8 -81.7 3.1 09 -109 -419 -61.1 -65.2
200 100 -86.5 -18.2 -56.4 -77.2 -80.8 -84.6 -8.1 -81.3 -24 -6.7 -49.2 -683 -758 -80.7
1 200 200 -89.6 -1.3 -17.5 -80.3 -90.9 -90.8 -90.5 -84.5 34 22 -392 -646 -70.3 -76.1
200 300 -919 19 48 -56.1 -93.2 -929 -93.8 -85.0 34 04 -29.1 -61.3 -65.6 -68.3
300 100 -86.5 -27.5 -61.2 -67.6 -72.4 -79.3 -82.7 -81.3 -53 -12.5 -582 -T14 -79.5 -859
300 200 -90.0 0.0 -276 -87.8 -89.6 -89.1 -89.5 -8.5 55 -19 -524 -66.7 -73.3 -81.3
300 300 -928 05 -93 -787 -924 -934 -91.7 -8.2 3.6 -1.2 -387 -63.7 -68.1 -73.2

100 100 0.2 -37.0 -904 -90.5 -91.7 -90.6 -89.5 0.2 -22.8 -63.8 -60.1 -58.9 -59.5 -63.0
100 200 0.0 -11.7 -83.8 -92.1 -92.7v -93.0 -93.1 -0.1 -12.6 -52.5 -65.2 -61.2 -61.2 -61.1
100 300 00 -79 -65.1 -923 -934 -936 -93.1 -0.1 -9.0 -387 -68.1 -61.9 -60.6 -61.9
200 100 -0.1 -721 -89.9 -86.8 -88.6 -86.5 -88.2 0.2 -36.1 -59.3 -60.2 -55.7 -55.6 -56.9
9 200 200 00 -274 -926 -904 -91.2 -921 -91.3 00 -23.8 -58.1 -66.4 -61.1 -58.7 -58.7
200 300 -0.1 -19.6 -91.0 -921 -923 -91.9 -925 0.2 -199 -53.8 -644 -67.8 -60.2 -59.9
300 100 -0.2 -83.6 -84 -845 -840 -839 -8.1 01 -422 -547 -61.6 -53.3 -54.0 -53.7
300 200 -0.1 -40.6 -90.3 -89.3 -889 -89.1 -89.6 0.0 -25.6 -58.0 -64.6 -64.4 -57.7 -57.4
300 300 0.1 -26.8 -91.1 -904 -90.9 -91.7 -91.8 0.1 -247 -57.7 -61.7 -70.1 -60.5 -58.9

Note: This table reports the differences in coverage probabilities of the horizon-by-horizon GLP and the baseline GLP. Confidence intervals
are computed using Theorem 2.



Table S33: EXPLAINING GROUP MEMBERSHIP (G =3)

(1) (2) (3) (4) ()

2
RGDP -0.986 -1.667
(-1.30) (-1.33)
Employment -0.366*
(-2.21)
Debt -1.971 2,007 -2.436%**
(-4.41)  (-3.15)  (-3.30)
Elasticity 0.777 0.479
(1.88) (1.15)
3
RGDP -2.386** -3.214*
(-2.97) (-2.46)
Employment -0.425*
(-2.50)
Debt -1.539*  -1.623* -2.441*
(-3.47)  (-2.56)  (-3.25)
Elasticity 0.796 0.414
(1.93) (0.99)
N 382 382 381 253 253

t statistics in parentheses
* p <0.05, ** p<0.01, *** p < 0.001
The coefficients for constant terms are omitted.
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Table $34: EXPLAINING GROUP MEMBERSHIP (G = 4)
(1) (2) (3) (4) (5)
2
RGDP -0.687 -1.720
(-0.85) (-1.32)
Employment -0.297
(-1.67)
Debt -1.715%*  -1.890**  -2.344**
(-3.63)  (-2.86)  (-3.06)
Elasticity 0.445 0.154
(1.03) (0.35)
3
RGDP -1.488 -2.113
(-1.91) (-1.62)
Employment -0.427*
(-2.52)
Debt -1.9417  -1.784*  -2.342**
(-4.31)  (-275)  (-3.10)
Elasticity 0.998* 0.664
(2.36)  (1.57)
4
RGDP -2.579** -3.784**
(-3.06) (-2.75)
Employment -0.422*
(-2.36)
Debt -1.549**  -1.787*" -2.772***
(-3.37)  (-2.68)  (-3.50)
Elasticity 0.829 0.410
(1.95)  (0.95)
N 382 382 381 253 253

t statistics in parentheses
*p < 0.05 ** p<0.01, ** p < 0.001
The coefficients for constant terms are omitted.
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Table S35: MSA Group EcoNoMiCc ProrfiLE (FE’)

GDP Income Population Employment  Regulation Elasticity Debt (Low)  Debt (High)

count mean std mean std mean std mean @ std mean std mean std mean std mean @ std

81 52091 21252 48206 13569 932 1864 581 1212 0.230 0.996 2.092 1.010 1.523 0.491 1.682 0.478
301 45678 11313 45301 8752 676 1564 418 1019 -0.215 0.749 2.725 1.516 1.403 0.480 1.562 0.447

g

1

2

1 31 54014 20465 48827 13319 1327 2479 800 1592 0.429 0.929 1.747 0.985 1.720 0.458 1.826 0.448
3 2 181 48592 15244 46558 9694 688 1816 434 1186 -0.176 0.865 2.750 1.634 1.337 0.498 1.503 0.435

3

1

2

3

170 44112 10702 44704 9554 666 1158 409 759 -0.165 0.735 2.584 1.263 1.472 0.449 1.637 0.459

12 56275 10566 51268 8833 2029 3717 1292 2428 0.466 0.525 1.232 0.893 1.899 0.431 2.064 0.470

167 49273 17550 47505 12012 774 1943 480 1260 0.022 0918 2.374 1.169 1.444 0.501 1.585 0.449

110 46300 10642 45030 7990 648 1092 409 742 -0.252 0.762 2.813 1.705 1.398 0.433 1.582 0.453
4 103 43343 10960 43820 8070 599 1095 359 688 -0.236 0.724 2.780 1.452 1.382 0.492 1.548 0.445
Note: GDP and income are per capita measured in dollars. Population and employment are measured in thousands of person and thousands of jobs respectively.

Regulation stands for the Wharton residential land use regulatory index, and Elasticity is the house supply elasticity. Debt (Low) and Debt (High) correspond to
the lower bound and upper bound of the debt to income ratio.
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Table S36: MSA Group EcoNoMIC PROFILE (HORIZON-BY-HORIZON)

GDP Income Population Employment  Regulation Elasticity Debt (Low)  Debt (High)

H g count mean std mean std mean std mean std mean std mean std mean std mean std
1 88 48936 15843 47241 10238 1040 2613 644 1703 0.272 0.760 1971 0.814 1.562 0.501 1.724 0.487

1 2 168 48399 15056 46585 10848 611 1176 381 751 -0.291 0.831 2.881 1.685 1.326 0.438 1.498 0.413
3 126 43898 11168 44101 8405 673 1201 415 799 -0.177 0.784 2.651 1.344 1.473 0.506 1.617 0.465

1 30 52836 21679 48810 13915 1449 2591 888 1692 0.460 0.579 1.619 0.884 1.784 0.448 1.916 0.457

6 2 244 47653 13691 45884 9203 768 1743 483 1136 -0.166 0.829 2.666 1.413 1.347 0.438 1.509 0.406
3 108 44039 12190 45188 10476 445 743 264 474 -0.181 0.824 2.690 1.558 1.512 0.537 1.686 0.508

1 42 53631 18970 49158 12791 1202 2251 743 1470 0.443 0.838 1.741 0.886 1.683 0.494 1.850 0.491

19 2 240 47948 13953 46127 9992 733 1704 461 1112 -0.216 0.807 2.687 1.430 1.349 0.428 1.519 0.407
3 100 42085 10726 44052 8335 525 1012 311 643 -0.122 0.779 2.717 1.576 1.510 0.556 1.652 0.510

1 20 53007 24374 48565 14018 1592 2968 948 1912 0.260 0.631 1.836 1.043 1.777 0.485 1.882 0.482

18 2 90 49726 14294 47234 10539 955 2312 605 1512 0.171 0.833 1.963 0.814 1.449 0.469 1.611 0.444
3 272 45710 13005 45286 9455 592 1135 366 740 -0.248 0.808 2.859 1.550 1.396 0.481 1.560 0.452

1 46 51229 19036 47611 12017 1173 2227 716 1444 0.453 0.821 1.825 0.932 1.640 0.560 1.757 0.500
94 2 185 47221 11778 46084 9129 752 1840 472 1205 -0.215 0.810 2.656 1.489 1.405 0.459 1.584 0.462
3 151 45537 15091 45195 10392 568 1024 349 658 -0.178 0.780 2.758 1.454 1.392 0.477 1.544 0.425




Figure S1: INFORMATION CRITERION
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Figure S2: GROUP IMPULSE RESPONSES (G = 2)
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Figure S3: GROUP IMPULSE RESPONSES (G = 4)
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Figure S4: GEOGRAPHICAL DISTRIBUTION (G = 4, FE))

109

_3
— 2
—



Figure S5: INFORMATION CRITERION (FE’)
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Figure S6: IMPULSE RESPONSES (G =2, FE)
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Figure S7: IMPULSE RESPONSES (G = 3, FE’)
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Figure S8: IMPULSE RESPONSES (G = 4, FE’)
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Figure S9: GEOGRAPHICAL DISTRIBUTION (G = 3, FE’)
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Figure S10: GEOGRAPHICAL DISTRIBUTION (G = 4, FE’)

Figure S11: ALTERNATIVE CRITERION (G = 3, FE’)
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Figure S12: IMPULSE RESPONSES (HORIZON-BY-HORIZON)
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Figure S13: HOUSE PRICES IMPULSE RESPONSES (CHARLESTON, WV)

(a) Individual LP-IV (b) Horizon-by-Horizon GLP

(c) Baseline GLP

Note: All IRs are measured in percentage and correspond to a one percentage increase in the FFR. The
shaded areas indicate 95% confidence bands.
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Figure S14: IMPULSE RESPONSEsS (HBH, h =1)
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Figure S15: IMPULSE RESPONSES (HBH, h = 6)
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Figure S16: IMPULSE RESPONSES (HBH, h = 12)
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Figure S17: IMPULSE RESPONSES (HBH, h = 18)
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Figure S18:

IMPULSE RESPONSES (HBH, h = 24)
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