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S1 Bias correction

Theorem 2 shows that the infeasible GLP estimator admits

√
NjT (β̂j,h − β0

j,h)
d→ Σ−1

j,hN(
√
κjB,Ψj,h) (1)

This section derives the analytical formula to estimate the bias. We define the following

estimates:
Ôzc,i,h =d

′
zc,iΩ̂i,hdzc,i

M zc,i,h =Ω̂i,h − Ω̂i,hdzc,i

(
d
′
zc,iΩ̂i,hdzc,i

)−1

d
′
zc,iΩ̂i,h

ei,t+h =yi,t+h − xi,tβ̂ĝi,h − ci,tϕ̂i,h

(2)

Results from Section S4.3 shows that the bias contains

B1 =
1

NjT 2

∑
i∈S0

j

∑
t

∑
s

zi,tx
′
i,tMzc,i,hzi,sϵi,s+h

B2 =
1

Nj

∑
i∈S0

j

d′zx,i

(
Ω̂i,h − Ωi,h

)
Ω−1

i,hMzc,i,hdzϵ,i,h

− 1

Nj

∑
i∈S0

j

d′zx,iΩi,hdzc,iO−1
zc,i,hdzc,i

(
Ω̂i,h − Ωi,h

)
dzϵ,i,h

B3 =
1

Nj

∑
i∈S0

j

d′zx,iΩi,h(dzc,i − dzc,i)O−1
zc,i,hdzc,iΩi,hdzϵ,i,h

B4 =
1

Nj

∑
i∈S0

j

d′zx,iΩi,hdzc,iO−1
zc,i,h

(
d̄zc,i − dzc,i

)′
Ωi,hdzϵ,i,h

(3)

The above bias derivation generalizes the setup in Su et al. (2016), where they ignore the

bias caused by the estimation of individual-level parameters. As a result, they only contain

the first term B1. However, general formula for correcting the bias arising from the weighting

matrix B2 is not available. Instead, here I assume individual-level 2SLS weighting matrix,

i.e., Ω̂i,h = 1
T
zi,tz

′
i,t.
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We propose to estimate the bias by

B̂1 =
1

NjT 2

∑
i∈Ŝj

∑
t

∑
s

k(|t− s|)zi,tx′
i,tM zc,i,hzi,sϵi,s+h

B̂2 =
1

Nj

∑
i∈Ŝj

∑
t

∑
s

k(|t− s|)d′zx,izi,tz′i,tΩ̂−1
i,hM zc,i,hzi,sϵi,s+h

− 1

Nj

∑
i∈Ŝj

∑
t

∑
s

k(|t− s|)d′zx,iΩ̂i,hdzc,iO−1
zc,i,hdzc,izi,tz

′
i,tzi,sϵi,s+h

B̂3 =
1

Nj

∑
i∈Ŝj

∑
t

∑
s

k(|t− s|)d′zx,iΩ̂i,hzi,tc
′
i,tÔ−1

zc,i,hdzc,iΩ̂i,hzi,sϵi,s+h

B̂4 =
1

Nj

∑
i∈Ŝj

∑
t

∑
s

k(|t− s|)d′zx,iΩ̂i,hdzc,iO−1
zc,i,hzi,tc

′
i,tΩ̂i,hzi,sϵi,s+h

(4)

where k(|t− s|) is some kernel function, e.g., the Bartlett kernel ker(|t− s|) = 1− |t−s|
H+2

.

Having obtained estimates of B1,B2,B3,B4, we can correct the bias by

β̃bc
j,h = β̃j,h − Σ̂−1

j,h

(
B̂1 + B̂2 + B̂3 + B̂4

)
(5)

where Σ̂j,h = 1
Nj

∑
i∈Ŝj

d
′
zx,iM zc,i,hdzx,i.

Another popular way to correct the bias is to use half-panel jackknife (Dhaene and

Jochmans, 2015). In particular, we can obtain the bias-corrected estimator as

β̃bc1
j,h = 2β̃j,h − (β̃1

j,h + β̃2
j,h)/2 (6)

where β̃j,h is the raw estimates, and β̃1
j,h, β̃

2
j,h are estimates based on the first half (1 ≤ t ≤

⌊T/2⌋) and the second half (1 + ⌊T/2⌋ ≤ t ≤ T ) respectively.

Such bias correction, however, may not work well in the current setup due to the presence

of misclassification. For example, when the group assignment is imprecisely estimated, even

when the bias-corrected estimator recovers the “pseudo-true” parameter, it may still not be

well centered around the true group parameters.

4



S1.1 Simulation studies

This section examines the performance of bias correction methods by replicating the sim-

ulation study. We consider two inference method. The first one estimate the asymptotic

variance of the GLP estimator according to Theorem 2, without taking into account the

potential incidental parameter bias. The second approach applies the half-panel jackknife

correction (Dhaene and Jochmans, 2015).

Before presenting the result, one may wonder why should researchers even use the uncor-

rected confidence interval, knowing that in the current setup a
√

T
N

bias is present. However,

estimating the bias, be it the analytical form or the more flexible jackknife alternative, can

be extremely difficult in when the data has latent group structure. For example, the bias

formula provided in (4) requries that we are working with the true group partition.

The results are reported in Table S2 and Table S3. Two patterns are noteworthy. For the

infeasible GLP estimator, the bias correction approach produces coverage probabilities close

to the nominal level. If we do not correct the bias, the coverage probabilities deteriorates

especially at longer horizons; see for comparison Table S1.

In stark contrast, the bias correction method fails to improve the coverage of the GLP

confidence intervals. Instead, it sometimes leads to even much lower coverage. This indi-

cates that the incidental parameter bias is poorly estimated, confirming our conjecture that

misclassification.

Finally, as expected, the bias correction is useful when the GLP recovers the latent group

structure with high accuracy. This points to a case when correcting incidental parameter

bias is particularly useful: the time series dimension is large enough for consistent group

estimation, while the cross-sectional dimension is even much larger N .

S1.2 Bias-robust inference

When the time series dimension is limited, Theorem 2 may not provide an accurate approx-

imation for the finite sample behavior of the GLP. This section provides a bias correction
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method that explicitly takes into account the worst-case bias in the presence of incidental

parameters and possible misclassification.

Recall that by (9) in the main text (page 10), for any given group assignment vector γ̂

we have

β̂j,h =

∑
i∈Ŝj

d
′
zx,iM zc,i,hdzx,i

−1∑
i∈Ŝj

d
′
zx,iM zc,i,hdzy,i,h

 , (7)

For notational convenience, let us denote Aj,h = 1
Nj

∑N
i=1 1 {ĝi = j} d̄′zx,iMzc,i,hd̄zx,i. Then

we can rewrite the above expression as

β̂j,h − β0
j,h = A−1

j,h

(
1
Nj

∑N
i=1 1 {ĝi = j} d̄′zx,iMzc,i,hd̄zy,i,h

)
− β0

j,h

= A−1
j,h

(
1
Nj

∑N
i=1 1 {ĝi = j} d̄′zx,iMzc,i,hd̄zx,i

[
β0
g0i
− β0

j,h

])
+A−1

j,h

(
1
Nj

∑N
i=1 1 {ĝi = j} d̄′zx,iMzc,i,hd̄zϵ,i,h

)
= A−1

j,h

∑G
l=1,l ̸=j

(
1
Nj

∑N
i=1 1 {ĝi = j, g0i = l} d̄′zx,iMzc,i,hd̄zx,i

) [
β0
l,h − β0

j,h

]
+A−1

j,h

(
1
Nj

∑N
i=1 1 {ĝi = j} d̄′zx,iMzc,i,hd̄zϵ,i,h

)
(8)

As we can see from (8), the bias of the GLP estimator can be decomposed into two parts.

For starters, the GLP estimator is subject to misclassification bias. In fact, (8) shows that

when 1 {ĝi = j, g0i = l} ̸= 0 (as is the case with small or fixed T ) the GLP estimator converges

to pseudo-true parameters that are weighted averages of the true ones 1. As a result, the

bias depends not only on the misclassification rates but also the discrepancy between true

group parameters β0
l,h − β0

j,h. Without knowledge of the true group parameters, neither the

sign nor the magnitude of the bias can be pinned down. This feature makes explicit bias

correction for misclassification difficult.

Second, even with perfect knowledge of the group structure, e.g., γ0 is known, the GLP

estimator is subject to the classical incidental parameter bias (Fernández-Val and Lee, 2013),

which is analyzed in the previous section.

To address the above concerns, I propose a bias-robust inference method that explicitly

takes into account the worst-case bias. The key idea is to replace the true group differences
1A similar expression is derived by Bonhomme and Manresa (2015)
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by our estimates. Specifically, by add and subtract the GLP estimates, we have

β0
l,h − β0

j,h = β0
l,h − β̂l,h + β̂l,h − β̂j,h + β̂j,h − β0

j,h . (9)

Denote by Cj,l,h = 1
Nj

∑N
i=1 1 {ĝi = j, g0i = l} d̄′zx,iMzc,i,hd̄zx,i, and the incidental parameter

bias by B0, we can rewrite (8) as

β̂j,h − β0
j,h = B0 + A−1

j,h

G∑
l=1,l ̸=j

Cj,l,h

[
β0
l,h − β̂l,h + β̂l,h − β̂j,h + β̂j,h − β0

j,h

]
. (10)

We can now rearrange the terms to obtain



I −
∑

l ̸=1 A
−1
j,hC1,l,h A−1

j,hC1,2,h . . . A−1
j,hC1,G,h

A−1
j,hC2,1,h I −

∑
l ̸=2 A

−1
j,hC2,l,h . . . A−1

j,hC2,G,h

... ... . . . ...

A−1
j,hCG,1,h A−1

j,hCG,2,h . . . I −
∑

l ̸=G A−1
j,hCG,l,h





β̂1,h − β0
1,h

β̂2,h − β0
2,h

. . .

β̂G,h − β0
G,h



=



A−1
j,h

∑G
l ̸=1 C1,l,h

[
β̂l,h − β̂1,h

]
A−1

j,h

∑G
l ̸=2 C2,l,h

[
β̂l,h − β̂2,h

]
. . .

A−1
j,h

∑G
l ̸=G CG,l,h

[
β̂l,h − β̂G,h

]


+



B0

B0

. . .

B0


(11)

Several comments are in order. First, the above system describes the relation between

the parameter estimation errors β̂j,h − β0
j,h, the misclassification errors (reflected in terms

Cj,l,h), and the incidental parameter bias.

Second, Aj,h, Cj,l,h, β̂j,h and B0 in the above expression are all readily available or es-

timable. The remaining unknown is the misclassification errors 1 {ĝi = j, g0i = l}.

When the time series dimension is moderately large, we may estimate the misclassification

errors by the group assignment probabilities using bootstrap. Specifically, suppose we can

generate bootstrapped data {(y(b)i,t , z
(b)
i,t , w

(b)
i,t )}. We can apply the GLP estimation to the

bootstrapped data, which leads to a γ(b). We can then estimate the misclassification errors

7



by

P
(
ĝi = j, g0i = l

)
=

1

B

B∑
b=1

1
{
ĝ
(b)
i = j, g0i = l

}
. (12)
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S2 Additional simulation evidence

S2.1 Alternative sample sizes

This section provides additional simulation evidence on different sample sizes. Specifically, I

repeat the exercise in Section 6.2 with a short T panel (T = 50), a large T panel (T = 300),

and a panel with sample size comparable to the empirical study (T = 200, N = 400).

Table S4 reports the results with relatively short T . Three observations are noteworthy.

First, the performance of the GLP depends crucially on the true IRs: in Design 1 where

the IRs are inseparable in short horizons, the GLP is unable to correctly classify entities; in

contrast, in Design 2 where the IRs are separable in short horizons, the GLP works decently

well. This observation illustrates clearly the difficulty in grouping IRs, and emphasizes the

importance of using horizon-specific weighting matrix.

Second, the performance of the GLP remains stable as we fix T and increase N , which is

in line with the findings in Section 6.2. In fact, although the consistency of the GLP depends

on T going to infinity, the GLP still gains from the increase in the cross-sectional dimension.

Third, we see that the GLP outperforms the individual LP-IV by a wide margin under

short T . Specifically, the RMSE of the GLP is, in the worse case, only 56.5% of the individual

LP-IV counterpart. The gain comes from a large reduction in the variance, as Column BR

suggests.

Next we consider the cases with both N and T large. Comparing Table S5 and Table S4,

we see that the performance of the GLP improves substantially as the time series dimension

gets large. Moreover, consistent with small sample case, the GLP performance remains

stable as we increase the cross-section dimension. In terms of the coverage probabilities of

the confidence interval, Table S8 shows that the coverage rates are satisfactorily, which is

reassuring for the results in our empirical application.

Given the above patterns, it is unsurprising to see that the GLP performs extremely

well when the time series dimension is large. Table S6 reports the results with T = 300

and N ranging from 500 to 1500. Even though we have N ≫ T , the GLP still outperforms

9



the panel LP-IV and the individual LP-IV in all cases. For example, in Design 1 with

T = 300, N = 1500, G0 = 3, the RMSE of the GLP is only 0.238, which is around half

of the individual LP-IV counterpart (0.423) and one-third of the panel LP-IV one (0.809).

Moreover, the classification accuracy remains well above 95%, corroborating that the time

series dimension can grow slower than the cross-sectional dimension.

Importantly, Table S7 and Table S9 show that the GLP coverage probabilities remain

satisfactory when N is large. In particular, the GLP coverage rates are comparable with the

infeasible counterparts when N is around three times larger than T . However, researchers

should be more careful when interpreting the confidence bands when the cross-sections are

exceedingly large.

On the whole, the simulation evidence shows that the GLP performs satisfactory in finite

samples, even when N is larger than T .

S2.2 Alternative sample sizes: unknown group number

This section reports additional simulation evidence when the number of groups is unknown

and selected by the information criterion. The simulation setup is identical to Section 6.1.

As is shown in Table S10, the selected number of groups converge to the true as the

sample size increases. Moreover, it generally minimizes the RMSE even when the group

number is misspecified. When T is particularly small, however, it tends to under-select and

may not minimize the RMSE, e.g. T = 50, G0 = 3 in Design 2. Overall, the patterns are in

line with the findings in Section 6.3.

S2.3 Alternative weighting matrix

One of the main merits of the GLP estimator is its flexibility in choosing weighting matrix,

which is important in grouping IR estimates. This section studies various choices of the

weighting matrix, including:

1. Unit and horizon specific weighting matrix (hereafter, UH). In particular, we set Ω̂i,h =

10



V̂ −1
i,h with V̂ −1

i,h defined in (6).

2. Horizon specific weighting matrix (H). We set Ω̂i,h = Ω̂h = ( 1
N

∑
i V̂i,h)

−1.

3. Unit specific weighting (U). We set Ω̂i,h = Ω̂i = ( 1
H

∑H
h=0 V̂i,h)

−1.

4. 2SLS weighting matrix. We set Ω̂i,h = Ω̂TSLS
i = 1

T

∑T
t=1 zi,tz

′
i,t.

5. IV weighting matrix. We set Ω̂i,h = Ω̂IV = IL

As is clear, the alternative weighting matrices exploit the information in the data to

varying degrees. Intuitively, the UH weight is most efficient as it not only downweights

uninformative horizons but also downweights uninformative units. However, the efficiency

comes at a cost of biasedness. To see this, consider the case without control variables. The

GLP with known group partition is:

β̃j,h = β0
j,h +

∑
i∈S0

g

d̄′zx,iΩ̂i,hd̄zx,i

−1 ∑
i∈S0

g

d̄′zx,iΩ̂i,hd̄zϵ,i,h

 . (13)

Since Ω̂i,h is correlated with d̄zϵ,i,h, the resulting estimates do not converge to the mean

effects but some weighted average of the individual effects. This problem is reminiscent of

the biasedness of the weighted least squares estimator.

The horizon-specific weights (H) instead only weigh against uninformative horizons.2

Although it leads to efficiency loss especially in the presence of heteroskedasticity, it is free

of the aforementioned bias.

Given that, unit-specific weighting (U) tends to be both biased and inefficient. As is well

known in the VAR and local projections literature (Kilian and Lütkepohl, 2017), impluse

responses are less precisely estimated for the longer horizons. Therefore, grouping based on

unit-specific weights is likely to perform worse.
2One may argue for an alternative horizon-specific weight Ω̂h = V̂ −1

α,h where V̂α,h is the estimated asymp-
totic variance matrix of α in the panel LP-IV model, with standard errors clustered in the unit-level (Cameron
and Miller, 2015). However, since the pooled panel LP-IV is by construction inconsistent, this alternative
choice may perform worse.
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We now discuss the results of different weighting schemes, which are summarized in

Table S11-Table S18. First, Table S11 shows that horizon-specific weights lead to the highest

classification accuracy. Notice that the gain can be quite large. For example, in Design 2

with N = 300, T = 100, G0 = 3, the H weight accuracy achieves 99.6%, while 2SLS results

in only 89.8% accuracy. The unit-and-horizon specific weights are generally the second-best

option. The remaining weighting choices generally lead to similar classification accuracy. To

sum up, the horizon-specific weights are preferred for better group assignment.

Second, Table S12 shows the GLP outperforms the panel LP-IV and the individual LP-IV

regardless of the choices of weighting matrices. Moreover, consistent with the previous re-

sults, the horizon-specific weighting yields lowest RMSE, followed closely by the UH weights.

Besides, the U weights generally lead to slightly more precise IR estimates than the 2SLS

and IV. Overall, the horizon-specific weights is most effective in reducing RMSE.

As for the length of confidence intervals, the UH weights generally have the narrowest

bands, as Table S13 shows. The horizon-specific bands are instead the largest, although still

only one-fifth of the IND counterparts. Given that some weighting schemes are more biased

(e.g. 2SLS and IV leading to misclassification errors), we should expect large differences in

the coverage probabilities.

This is confirmed by Table S14-Table S18. For ease of interpretation, I report the coverage

probabilities of the infeasible GLP as the benchmark, and differences between the IGLP and

the GLP with different weighting schemes. For example, the column for (N = 100, T =

100, G0 = 2, h = 0, Design 1) shows that the IGLP coverage probabilities are 94.9% while

the UH coverage rates are on average 14% lower than the IGLP.

On average, the tables show that coverage probabilities of the horizon-specific weights

are closest to the infeasible counterparts. Alternative weights can lead to substantial under

coverage especially when T is moderate. For example, consider the case with (N = 300, T =

100, G0 = 2 Design 1). The coverage rates for H weights are on average 8.9% lower than

the infeasible ones, whereas 2SLS weights are on average 16.1% lower. On the whole, the

horizon-specific weighting scheme performs the best in terms of the coverage rates.
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In conclusion, the evidence shows that the H weights are preferred. Unless otherwise

noted, this will be the default weighting scheme used in this paper.

S2.4 Alternative inference methods

This section compares the large T inference methods (Theorem 2) and small T adjustment

(Proposition ??). We label the resulting outcomes as LT and ST .

Table S19 reports the band ratios of the corresponding confidence bands. As expected,

the ST confidence intervals are always larger than the LT ones, although the differences are

limited. Moreover, the two confidence bands converge as T increases, which is in line with

Proposition ??. Table S20 and Table S21 further confirm the previous results. As we can

see, the coverage rates of the ST inference are on average slightly higher than the LT ones.

Overall, the result suggests that ST is a slightly more conservative inference method. Given

that, the large T inference is used by default in this paper.

S2.5 Alternative specification: first-differenced

Given our baseline DGP

yi,t = µi + ρgiyi,t−1 + δgixi,t + ϵi,t

xi,t = µi + πz̃i,t + ui,t

, (14)

model (19) (in the paper) introduces dynamic panel bias when projecting out unit fixed

effects. To address this concern, I estimate the first-differenced model following Anderson

and Hsiao (1982). Specifically, denote ∆yi,t = yi,t − yi,t−1, then

∆yi,t = ρgi∆yi,t−1 + δgi∆xi,t +∆ϵi,t. (15)

Notice that ∆yi,t−1 is endogenous as it is correlated with ϵi,t−1 (and thus ∆ϵi,t). However,

we can instrument it with yi,t−2. As for ∆xi,t = π∆z̃i,t + ∆ui,t, we can instrument it with
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z̃i,t−1. To sum up, we estimate the impulse responses through

∆yi,t+h = βgi,h∆xi,t + ϕi,h∆yi,t−1 + ei,t+h , (16)

with instrument (z̃i,t−1, yi,t−2).

The results are summarized in Table S22-Table S24. Three comments are in order.

First, comparing Table S22 and Table 2, we see that all the conclusions drawn in Section 6.2

hold under this alternative specification: 1) the GLP serves as a good data-driven middle

ground between the panel LP-IV and the individual LP-IV; 2) the GLP performs better as

T increases.

Second, the RMSE of the baseline fixed effects estimation can be even smaller than

the first-differenced alternative, because of the reduction in variance. As the Column BR

suggests, the first-differenced estimator is, in the current setup, slightly less efficient than

the fixed effects estimator and thus has larger confidence bands.

Third, Table S23 shows that the GLP coverage rates are overall more conservative un-

der the first-differenced specification. Similarly, the coverage rates of the infeasible GLP

also improves in the first-differenced setup especially for longer horizons (see Table S1 and

Table S24). This is mainly because of the dynamic panel bias in the baseline fixed-effects

setup.

Overall, the simulation evidence confirms the reliable performance of the GLP algorithm.

Moreover, the first-differenced specification reduces the dynamic panel bias, while being

slightly less efficient than the baseline fixed effects case.

S2.6 Alternative objective function

As is mentioned in the paper, the baseline GLP estimator defined in (4) is by construction

different from the conventional panel GMM estimator. For illustrative purposes, let us

compare the two objective functions given the true group partition assuming that there

are no controls (and fixed effects) and we use identical weighting matrix Ωi,h = IL. The
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conventional GMM criterion is

Qpool(β) =
H∑

h=0

[
1

NT

N∑
i=1

T∑
t=1

zi,t(yi,t+h − xi,tβgi,h)

]′ [
1

NT

N∑
i=1

T∑
t=1

zi,t(yi,t+h − xi,tβgi,h)

]

which gives

β̌j,h = β0
j,h +

∑
i∈S0

j

X ′
iZi

∑
i∈S0

j

Z ′
iXi

−1 ∑
i∈S0

j

X ′
iZi

∑
i∈S0

j

Z ′
iEi,h

 , (17)

where β0
j,h is the true parameter, and Xi = (xi,1, . . . , xi,T )

′ and Zi = (zi,1, . . . , zi,T )
′ are

defined as in the paper. Under conventional dependence and moment assumptions, we have

1

NjT

∑
i∈S0

j

T∑
t=1

zi,txi,t
p→ Σj ,

1√
NjT

∑
i∈S0

j

T∑
t=1

zi,tϵi,t+h
d→ N(0, Vj,h) ,

and thus √
NjT (β̌j,h − β0

j,h) ∼ N(0, (Σ′
jΣj)

−1Σ′
jVj,hΣj(Σ

′
jΣj)

−1) . (18)

Instead, my objective function gives:

β̂j,h = β0
j,h +

∑
i∈S0

j

(X ′
iZi)(Z

′
iXi)

−1 ∑
i∈S0

j

(X ′
iZi)(Z

′
iEi,h)

 (19)

leading to

√
NjT (β̂j,h−β0

j,h) =

 1

Nj

∑
i∈S0

j

∑T
s=1 xi,tz

′
i,t

T

∑T
s=1 zi,tx

′
i,t

T

−1  1√
Nj

∑
i∈S0

j

∑T
t=1 xi,tz

′
i,t

T

∑T
t=1 zi,tϵi,t+h√

T

 .

The first term converges to some positive definite matrix Σ̃ by standard assumptions,

e.g. Assumptions 1 and 3. As for the second term, we can decompose it by

1√
Nj

∑
i∈S0

j

∑T
t=1 xi,tz

′
i,t

T

∑T
t=1 zi,tϵi,t+h√

T
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=
1

T
√

NjT

∑
i∈S0

j

T∑
s=1

T∑
t=1

E(xi,sz
′
i,s)zitϵi,t+h

+
1

T
√
NjT

∑
i∈S0

j

T∑
s=1

T∑
t=1

[
xi,sz

′
i,s − E(xi,sz

′
i,s)
]
zitϵi,t+h

=
1√
NjT

∑
i∈S0

j

T∑
t=1

E(xi,sz
′
i,s)zitϵi,t+h +

1

T
√

NjT

∑
i∈S0

j

T∑
s=1

T∑
t=1

E[xi,sz
′
i,szi,tϵi,t+h]

+
1

T
√
NjT

∑
i∈S0

j

T∑
s=1

T∑
t=1

[(
xi,sz

′
i,s − E(xi,sz

′
i,s)
)
zitϵi,t+h − E[xi,sz

′
i,szi,tϵi,t+h]

]
. (20)

Now the first element is asymptotically normal, whereas the second term contains the bias

from IV estimation, and the third term is asymptotically negligible under Assumption 1.B

and Lemma 9.

In particular, assume that we have the first stage:

xi,t = Πzi,t + ui,t (21)

where Π is a K × L matrix governing the instrument strength. Then we can rewrite the

second term as

1

T
√

NjT

∑
i∈S0

j

T∑
s=1

T∑
t=1

E[xi,sz
′
i,szi,tϵi,t+h]

=
1

T
√

NjT

∑
i∈S0

j

T∑
s=1

T∑
t=1

E[(Πzi,s + ui,s)z
′
i,szi,tϵi,t+h]

=
1

T
√

NjT

∑
i∈S0

j

T∑
s=1

T∑
t=1

E[Πzi,sz′i,szi,tϵi,t+h] +
1

T
√
NjT

∑
i∈S0

j

T∑
s=1

T∑
t=1

E[ui,sz
′
i,szi,tϵi,t+h]

=
1

T
√

NjT

∑
i∈S0

j

E[U ′
iZiZ

′
iEi,h] =

√
Nj

T

1

T
E[U ′

iZiZ
′
iEi,h] , (22)

where Ui = (ui,1, . . . , ui,T )
′. Two comments are in order. First, it is clear that the bias arises

from the correlation between ui,t and ϵi,t+h, which is well documented in the IV literature
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(Nagar, 1959). Second, the magnitude of the bias is determined by the convergence rate of

T relative to N . By Assumption 3.B, within each group we have N/T → 0 and thus the

bias is negligible, which leads to

1√
Nj

∑
i∈S0

j

∑T
t=1 xi,tz

′
i,t

T

∑T
t=1 zi,tϵi,t+h√

T

d→ N(0, Ṽ ) (23)

and √
NjT (β̂j,h − β0

j,h)
d→ N(0, Σ̃−1Ṽ Σ̃−1) . (24)

The difference between our estimator and the conventional one is twofold. First, our

estimator is generally less efficient because it does not pool over both i and t. Second, our

estimator can be biased when T is small relative to Nj. In our setup, we assume that T is

large by Assumption 3.B so that the bias is negligible. Moreover, the bias is small enough in

macroeconomic applications with large T . In this sense, the difference between the proposed

GMM estimator and the conventional one is small.

To quantify the difference, I study the finite sample performance of the infeasible GLP

under these two objective functions. In particular, I simulate the data from model (18) and

estimate (19) using the true group partitions.

Table S25 reports the results. Three observations stand out. First, the fully-pooled

criterion generally leads to more precise estimates with lower RMSE. Second, the baseline

GLP criterion yields slightly narrower confidence bands. Third, however, the differences

between the criteria remain sufficiently small through all sample sizes, with the biggest

RMSE differential being only 0.02. Moreover, Table S27 and Table S26 report the coverage

rates. Again, the coverage rates are slightly higher for the fully-pooled estimator, although

the average difference in coverage probabilities is merely 1.3%.

Overall, finite sample analysis shows that the fully-pooled estimator in general performs

better, although the marginal gains are quantitatively small.
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S2.7 Horizon-by-horizon grouping

Various methods have been proposed to group coefficients (Su et al., 2016; Wang et al., 2018;

Lewis et al., 2019). However, these approaches fail to recognize the fact that (a) IRs may

overlap at some horizons, e.g. starting from close to zero in h = 0, and (b) IRs are very

noisy for longer horizons. Therefore, it may be difficult to cluster impulse responses horizon-

by-horizon (hereafter HBH) both in population (due to the violation of Assumption 2.B)

and in samples (due to large estimation variance). In this section, I repeat the exercise in

Section 6.2 but estimate it under HBH.

Table S30 and Table S31 present the results for classification accuracy, confidence bands

ratios and RMSE. We discuss the three metrics in turn. First, grouping IRs horizon-by-

horizon results in extremely imprecise group estimates. Second, the band ratios of the

HBH remain largely the same as our baseline GLP. Combined with the low classification

accuracy, we would expect that the confidence intervals of the HBH seriously undercover

the true IRs. Finally, the RMSE of the HBH are inflated due to the misclassification biases.

Overall, the baseline GLP performs much better than the HBH. Even in the worse case with

(N = 100, T = 100, G0 = 3, Design 1), our baseline GLP increases the accuracy by 18.3%

and reduces the RMSE by 25.7%.

Given the above results, it is not surprising that the confidence intervals of the HBH

results in much lower coverage rates. Table S32 reports the differences in coverage rates

between HBH and our baseline. On average the coverage probabilities of the HBH are

56.2% lower than the baseline.

Interestingly, the results for Design 2 and horizon h = 0 clearly shows the condition

under which the HBH can perform well. Recall from Table 1 that in this case the IRs are

both informative and separable. Therefore, the cost of ignoring information from nearby

horizons is relatively small. However, when moving on to horizon h = 1, the HBH fails to

correctly identify groups as IRs are noiser. In stark contrast, the baseline GLP effectively

weights across horizons.

In conclusion, the evidence shows that grouping IRs horizon-by-horizon would lead to
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imprecise group estimates and IR estimates. More importantly, the confidence intervals

would be exceedingly short. As a consequence, existing methods in grouping coefficients are

unlikely to correctly group impulse responses.
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S3 Empirical application

S3.1 Data description

• Housing prices. The benchmark model is based on monthly MSA level house price

index from Freddie Mac, which includes N = 382 MSAs from January 1975 to March

2019. The price index is a seasonally adjusted repeated-sales index, normalized to be

100 in December 2000. The level index is transformed into monthly growth rates by

taking log differences, and is expressed in percentage terms.

• Macroeconomic variables. The macro variables used in benchmark model are monthly

series of Fed Funds Rates (FFR), industrial production (IP), consumption expenditure

(PCEPI), and real estate loans at all commercial banks (REALLN), all of them from

FRED database, and 30-year fixed-rate for mortgage products (FRM30), collected

from Freddie Mac. The weekly FRM30 series is averaged to monthly data. IP, PCEPI

and REALLN are transformed into monthly growth rates in the same way as house

prices.

• External instruments. The benchmark instrument for the monetary shocks over the

period 1991:1 to 2009:12 is the informationally robust instrument in ?.

• MSA economic profiles. MSA-level economic data, including per capita personal in-

come (dollars), population (thousands of person), and total employment (thousands of

jobs) are 2017 figures obtained from the MAINC30 from the US Bureau of Economic

Analysis (BEA). The real GDP per capita in 2017 is obtained from MAGDP10. The

and house price elasticity is provided by Saiz (2010). Household debt-to-income ratio

is from Ahn et al. (2018). Precise ratio is not accessible. Instead, we obtain the high

and low range of the ratio.
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S3.2 Determining the group number of housing responses

To start with, Figure S1 shows that the information criterion is minimized with two groups

(Ĝ = 2). However, as is discussed in Section 6.3, the information criterion may under-select.

Therefore, I consider also the distinctiveness of the estimated IRs to help select the group

number.

Comparing Figure 3 and Figure S2, specifying Ĝ = 3 separates Group 2 (mild negative

responses) into groups with muted responses and negative responses, while keeping the

positive responses largely unchanged. If we further increase the group number to four,

however, Figure S3 shows that the IRs become less distinguishable, e.g. between Group 2

and Group 3.

Therefore, we choose three groups as our baseline case. Importantly, the group patterns

discussed in Section 7.2 hold under two or even four groups.

S3.3 Determinants of the group structure of housing responses

To formally examine the relation between economic factors and group membership, I estimate

a multinomial logit model on the estimated group assignment.

Table S33 presents the results with three groups (Ĝ = 3). First, the signs of the estimated

coefficients are fairly stable across all models, and they are consistent with the analysis in

Section 7.2. Specifically, the first two columns suggest that the probability of belonging to

Group 3 relative to Group 1 is significantly lower as real GDP or employment increase. In

words, Group 3 are generally poorer and have less employment.

Second, columns (3)-(5) show that an MSA is more likely to be classified into Group 1

when the debt-to-income ratio is higher and when housing markets are less elastic. Moreover,

the relation holds even when income levels are controlled for.

Finally, Table S34 shows that when we increase the group number to four (Ĝ = 4) the

group partition exhibits a similar pattern as described above.

On the whole, the evidence supports the qualitative analysis in Section 7.2. That is, rich,
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populated and indebted regions (Group 1) are likely to have house price appreciation after a

tightening monetary shock. Moreover, reducing household debt-to-income ratio significantly

increases the probability of having mild price responses (Group 2), whereas reducing the

income level strongly increases the probability of large price depreciation.

S3.4 Alternative specifications

In this section I discuss the results excluding the lagged dependent variables as controls.

For ease of notation, I call the benchmark model as FE and this alternative specification is

labeled as FE’.

To start with, Figure S6-Figure S8 show that the estimated IRs are similar to the bench-

mark, albeit in smaller magnitudes. Moreover, Table S35 reports the economic profiles under

FE’. As we can see, the group pattern under this alternative specification captures the same

economic forces. Specifically, Group 1 with positive IRs is: 1) richer and more economically

developed; 2) more populated; 3) more regulated and inelastic in the housing markets; and

4) more indebted (compared to Group 2).

As for the number of groups, Figure S5 shows that the information criterion is again

minimized at Ĝ = 2. As is discussed in Section S3.2, the group patterns hold under difference

choices of the number of groups: MSAs with positive IRs are generally more economically

developed, housing markets are more regulated, and debt levels are higher.

Importantly, the group partition still cannot be recovered by simple external criteria.

For example, Figure S11 replicates Figure 4 under FE’. As we can see, the poorest MSAs in

Group 1 are unambiguously distinct from the poor MSAs in Group 3. Besides, the richest

10% MSAs, though now resembles the responses of Group 2, have much moderate responses

compared with Group 1. Hence, income level fails to recover the documented group pattern.

As a whole, the analysis shows that the main results in Section 7.2 hold under this

alternative specification.
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S3.5 Horizon-by-horizon grouping

We now examine the stability of the estimated group structure by estimating latent groups

horizon-by-horizon (hereafter HBH). Four observations stand out.

First, as we can see from Figure S12, the HBH generates Group IRs that are qualitatively

similar to our benchmark case (hereafter BASE). Specifically, it separates 1) Group 1 with

positive IRs, 2) Group 2 with muted responses, and 3) Group 3 with negative IRs. However,

now the IR estimates are highly jagged, as they are contaminated by horizon-specific noises

(Barnichon and Brownlees, 2019). In fact, when comparing the estimates, Group 3 (HBH)

has IRs around twice as large as Group 3 (BASE).

Second, compared to BASE, HBH yields much narrower confidence bands. Notice how-

ever, these bands generally have very low coverage rates as is illustrated in Section S3.5.

Consider for example Charleston city of West Virginia. Figure S13 reports the impulse re-

sponses given by the individual LP-IV (IND), HBH and BASE respectively. Although the

IND IRs tend to be positive before turning into negative for longer horizons, they are in most

cases insignificant. The HBH keeps the sign and magnitude of the individual IRs largely

unchanged, but substantially reduces the confidence bands —by grouping nearby MSAs.

Moreover, there are several “breaks” in the HBH IRs that are hard to justify in economic

theories, and is likely to result from misclassification.

In contrast, the BASE serves as a middle ground between the IND and HBH: First, it

preserves the shape of the IRs. Second, it effectively takes into account the large confidence

bands of the IND. As a consequence, the the IRs are not only more moderate but also free

of “breaks”.

Third, Figure S14-S18 report the group assignments for horizons h = 1, 6, 12, 18, 24.

As we can see, the group structure is highly unstable across horizons; see for example the

clusters in Florida. In fact, 80.4% of the MSAs change their group membership across

horizons, among which 27 MSAs switch between Group 1 and Group 3, leading to breaks in

IR estimates. The reason is that (a) IRs are hardly distinguishable around h = 0, and (b)

IRs in the longer horizons are noisy, as illustrated in Figure 2, and grouping based on those
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horizons alone can be imprecise.

Finally, Table S36 shows that group patterns of our baseline results generally hold under

this alternative specification. For example, Group 1 with positive IRs are generally more

developed. However, the documented patterns are also unstable across horizons. For ex-

ample, at horizon h = 1 there is a U-shaped relation between population and IRs, which

converts into a monotonically decreasing relation for longer horizons. Similar patterns can

be found for housing supply elasticity and debt-to-income ratios. The unstable relations

between economic characteristics and the impulse responses are likely to result from the

reasons discussed above.

Overall, the results demonstrate that estimating group IRs horizon-by-horizon can repli-

cate some patterns of our baseline method, but the estimates are subject to noises and thus

unstable. Moreover, modeling group structure horizon-by-horizon yields unusually small

estimated standard errors. In light of the simulation evidence in Section S3.5, researchers

should be cautious in using and interpreting horizon-by-horizon grouping results.
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S4 Proof of Theorems and Propositions

It is useful to present here some (in)equalities:

|a′b| ≤ ∥a∥ ∗ ∥b∥, for a, b ∈ Rn , (25)

∥Ab∥ ≤ ∥A∥ ∗ ∥b∥, for A ∈ Rm×n, b ∈ Rn , (26)

|a′Ab| ≤ ∥a∥ ∗ ∥A∥ ∗ ∥b∥, for a ∈ Rm, A ∈ Rm×n, b ∈ Rn , (27)

∥AB∥ ≤ ∥A∥ ∗ ∥B∥, for A ∈ Rm×n, B ∈ Rn×r , (28)

where ∥a∥2 = tr(aa′) =
∑n

i=1 a
2
i for a = (a1, . . . , an)

′, and ∥A∥2 = tr(AA′) =
∑n

i=1

∑n
j=1 a

2
i,j,

for A = [ai,j]i,j=1,...,n. Moreover, for any conformable matrix A and vectors a, b, we have

a′Aa− b′Ab = (a− b)′A(a− b) + 2b′A(a− b) (29)

All the inequalities can be easily derived using the Cauchy-Schwarz inequality.

Notation. For notation convenience, summations are taken over all possible values unless

otherwise stated, e.g.
∑

t =
∑T

t=1. Moreover, consistent with the main text, we denote the

following moments:

d̄zx,i = 1
T

∑T
t=1 zi,tx

′
i,t, dzx,i = E[zi,tx′

i,t]

d̄zc,i = 1
T

∑T
t=1 zi,tc

′
i,t, dzc,i = E[zi,tc′i,t]

d̄zy,i,h = 1
T

∑T
t=1 zi,tyi,t+h,

d̄zϵ,i,h = 1
T

∑T
t=1 zi,tϵ

′
i,t+h, dzϵ,i,h = E[zi,tϵi,t+h]

M zc,i,h = Ω̂i,h − Ω̂i,hd̄zc,i(d̄
′
zc,iΩ̂i,hd̄zc,i)

−1d̄′zc,iΩ̂i,h

Mzc,i,h = Ωi,h − Ωi,hdzc,i(d
′
zc,iΩi,hdzc,i)

−1d′zc,iΩi,h

(30)

Then we can rewrite the individual objective function (equation (5) in the main text) as

Q̂iTh(βgi,h, ϕi,h) = m̂′
i,hΩ̂i,hm̂i,h, m̂i,h = d̄zy,i,h − d̄zx,iβgi,h − d̄zc,iϕi,h . (31)
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The GLP estimator given some generic grouping γ is then

β̂j,h(γ) =

∑
i∈Sj

d
′
zx,iM zc,i,hdzx,i

−1∑
i∈Sj

d
′
zx,iM zc,i,hdzy,i,h

 (32)

and for all i = 1, . . . , N , the individual level parameter given βgi

ϕ̂i,h(βgi) =
(
d
′
zc,iΩ̂i,hdzc,i

)−1

d
′
zc,iΩ̂i,h

(
dzy,i,h − dzx,iβgi,h

)
. (33)

Finally, we define an auxiliary objective function as below.

Definition 1. The auxiliary objective function is defined as

QNT (β,ϕ, γ) =
1

N

∑
i

∑
h

QiTh(βgi,h, ϕi,h) (34)

with QiTh(βgi,h, ϕi,h) = m′
i,hΩi,hmi,h and

mi,h = E[m̂i,h] = E
[
zitx

′
it

(
β0
g0i ,h

− βgi,h

)
+ zitc

′
it

(
ϕ0
i,h − ϕ

)
+ zitϵit+h

]
= dzx,i

(
β0
g0i ,h

− βgi,h

)
+ dzc,i

(
ϕ0
i,h − ϕi,h

) (35)

Definition 2. For two collections of parameters β̃ = (β̃1, . . . , β̃G1) and β = (β1, . . . , βG2)

with possibly different G1 and G2, define the Hausdorff distance between them as

dH(β, β̃) = max

{
max

g∈{1,...,G2}
min

g̃∈{1,...,G1}
∥β̃g̃ − βg∥, max

g̃∈{1,...,G1}
min

g∈{1,...,G2}
∥β̃g̃ − βg∥

}
. (36)

Definition 3. We work with the following the neighborhood of β0
g,h:

Nη =
{
β ∈ ΘG : dH

(
β̂,β0

)
≤ η
}

. (37)

S4.1 List of all lemmas

I list all the relevant lemmas below.
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Lemma 1. Under Assumptions 1.B-1.E, for any ν > 0, we have for any δ > 0

P

(
supi

∥∥∥∥ 1
T

T∑
t=1

zi,tw
′
i,t − E[zi,tw′

i,t]

∥∥∥∥ > ν

)
= o(NT−δ)

P

(
supi

∥∥∥∥ 1
T

T∑
t=1

zi,tϵi,t+h

∥∥∥∥ > ν

)
= o(NT−δ)

. (38)

Lemma 2. Under Assumption 1, we have

sup
i

sup
β∈Θ, ϕ∈Φ

∣∣Q̂iTh(β, ϕ)−QiTh(β, ϕ)
∣∣ = op(NT−δ), for all h ∈ 0, . . . , H

sup
β∈ΘG,ϕ∈ΦN ,γ∈G

∣∣Q̂NT (β,ϕ, γ)−QNT (β,ϕ, γ)
∣∣ = op(NT−δ)

(39)

Lemma 3. Under Assumptions 1 and 2, and assume that the number of groups G0 is given,

then the Hausdorff distance between the estimated group IRs and the true converges to zero

as both N and T go to infinity, i.e.

dH(β̂,β
0)

p→ 0 . (40)

Lemma 4. Under Assumption 1, and for βgi such that maxi ∥βgi − βg0i
∥ = op(1), we have

max
i

∥ϕ̂i,h(βgi)− ϕ0
i,h∥ = op(1) . (41)

Lemma 5. Under Assumptions 1-2, with correctly specified number of groups G0. Then for

η > 0 small enough, we have

sup
β∈Nη

sup
i

1{ĝi(β) ̸= g0i } = op(NT−δ) . (42)

Lemma 6. Under Assumptions 1, we have

supi d̄
′
zx,iΩ̂i,hd̄

′
zx,i = supi dzx,iΩi,hdzx,i + op(1)

supi d̄
′
zc,iΩ̂i,hd̄

′
zc,i = supi dzx,iΩi,hdzc,i + op(1)

supi d̄
′
zx,iΩ̂i,hd̄

′
zc,i = supi dzx,iΩi,hdzc,i + op(1)

. (43)

27



Lemma 7. [Equation (1.7) in Merlevède et al. (2011)] Let {Xt, t ≥ 1} be a sequence of

strongly mixing real-valued and centered random variables. Assume that for some positive

constants, c1, c2, c3, c4

(i) the mixing coefficient satisfies α(τ) ≤ exp (−c1τ
c2);

(ii) tail probabilities supt P(|Xt| > ν) ≤ exp (1− (ν/c3)
c4).

Then let c = c2c4
c2+c4

, there exists a positive constant C such that for any λ > 0 and r ≥ 1,

P

(
sup

1≤s≤T

∣∣ s∑
t=1

Xt

∣∣ ≥ 4λ

)
≤ 4

(
1 +

λ2

rTM

)−r/2

+ 4CTλ−1 exp

[
−c1

λc

cc3r
c

]
(44)

where M = supt>0

(
E(X2

t ) + 2
∑

s>t |E(XtXs)|
)
.

Lemma 8. [Corollary A.2 in Hall and Heyde (1980)] Suppose X and Y are two random

variables which are F - and H-measurable. If E∥X∥p < ∞ and E∥Y ∥q < ∞ where p, q > 1

and p−1 + q−1 < 1. We have

Cov(X,Y ) ≤ 8∥X∥p∥Y ∥q (α(G,H))1−p−1−q−1

(45)

Lemma 9. [Lemma A.2 in Gao (2007)] Let f(·, ·) be a symmetric Borel function defined on

RL × RL. Let the process ξt be an L-dimensional strictly stationary and α-mixing process.

Assume that for any fixed r ∈ RL, E[f(ξ1, r)] = 0 and E|f(ξt, ξs)|2(1+δ) < ∞. Then

E

[
T∑
t=1

T∑
s=1

f(ξt, ξs)

]2
≤ O(T 2) . (46)

Remark S1. Lemma 1 is analogous to Lemma B.5 in Bonhomme and Manresa (2015). Since

the uniform convergence result holds for any δ > 0, they work under the assumption that

there exists some positive number a > 0 such that N/T a → 0 and set δ = a. In the large

N, T asymptotics we consider, i.e., N
T

→ κ ∈ [0,∞), uniform convergence still holds when

we choose δ > 1. Although the choice of δ is arbitrary, larger values of δ necessarily requires

a larger sample size T to ensure finite sample performance.
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Remark S2. Lemma 2 follows closely Lemma 3 in Fernández-Val and Lee (2013), which is

crucial in establishing the consistency of β in Lemma 3 and of ϕi,h in Lemma 4. The key

step is (124), which shows that the uniform convergence rate is determined by supi ∥dzw,i −

dzw,i∥, supi ∥dzϵ,i,h∥ and ∥Ω̂i,h − Ωi,h∥. Alternative assumptions can be made. For example,

Assumption B1(iv) of Su et al. (2016) assumes that

P

(
sup
i

∥Ω̂i,h − Ωi,h∥ ≥ η

)
= o(N−1) (47)

which holds, if we use 2SLS weighting matrix Ω̂i,h = 1
T
zi,tz

′
i,t, and apply Lemma 1 with δ > 2.

Remark S3. Notice that Lemma 3 is derived under the assumption that the true number

of groups is known. To prove Proposition 1, we would like to study the behavior of the GLP

estimator with G > G0 (the behavior when underfitting G < G0 is assumed in the high-level

assumption 4.A). To this end, in Lemma ?? we re-establish Lemmas 3 with G > G0.

Compared with the correct specification case, the difficulty arises from the fact that

the Hausdorff distance in Lemma 3 cannot be easily established. To see this, consider the

extreme case when we set G = N , then the model reduces to unit-level time series regression,

which slows down the convergence rate. Moreover, the mapping argument in Lemma 3 is

not applicable. Instead, we prove Lemma ?? which states that the estimation error of βgi is

uniformly bounded.

Remark S4. Lemmas 8-9 are a set of results for strongly mixing processes, and the proof

is omitted.

S4.2 Theorem 1

Proof. The theorem contains two parts. The first part shows that the misclassification prob-

ability converges to zero. The second part shows that the GLP estimator is asymptotically

equivalent to the infeasible estimator under true grouping.

Part I: consistent group estimation. The last piece of Theorem 1 is the convergence of
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ĝ to the true group assignment. Notice that

P

(
sup

i∈{1,...,N}
| ĝ(β̂)− g0i |> 0

)

=P

(
sup

i∈{1,...,N}
| ĝ(β)− g0i |> 0

)
(P (β ∈ Nη) + P (β /∈ Nη))

≤P

(
sup
β∈Nη

sup
i

1
{
ĝi(β) ̸= g0i

}
> 0

)
+ P (β /∈ Nη)

≤op(NT−δ) + op(1)

(48)

where the last inequality follows from Lemma 5, which bounds the probability of misclassi-

fication given that β ∈ Nη, and Lemma 3, which bounds the probability P (β /∈ Nη).

Part II: asymptotic equivalence. We want to show that β̂ − β̃
p→ 0 where β̃ is the

infeasible estimator defined by

(β̃, ϕ̃) = argmin
(β,ϕ)∈(Θ,Φ)

Q̂NT (β,ϕ, γ
0) . (49)

Notice that the individual parameters depend implicitly on β̃, and I suppress the dependence

for notational simplicity. The infeasible estimator satisfies the first order conditions:

∑
i∈S0

g

d̄′zx,iΩ̂i,h

(
d̄zy,i,h − d̄zx,iβ̃g0i ,h

− d̄zc,iϕ̃i,h

)
= 0

d̄′zc,iΩ̂i,h

(
d̄zy,i,h − d̄zx,iβ̃g0i ,h

− d̄zc,iϕ̃i,h

)
= 0

. (50)

For later use, let us denote the residuals of the auxiliary estimator by ẽi,t+h = yi,t+h −

x′
i,tβ̃g0i ,h

− c′i,tϕ̃i,h and d̄zẽ,i,h = 1
T

T∑
t=1

zi,tẽi,t+h. The FOCs can then be rewritten compactly as

∑
i∈S0

g

d̄′zx,iΩ̂i,hd̄zẽ,i,h = 0, d̄′zc,iΩ̂i,hd̄zẽ,i,h = 0 . (51)

Moreover, let us denote βd
g0i ,h

= β̃g0i ,h
− β̂g0i ,h

and ϕd
i,h = ϕ̃i,h − ϕ̂i,h. Then by simple manipu-
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lations, we have

Q̂NT (β̂, ϕ̂, γ
0)− Q̂NT (β̃, ϕ̃, γ

0)

=
1

N

∑
h

∑
i

[
d̄′zy,i,h − d̄zx,iβ̂g0i ,h

− d̄zc,iϕ̂i,h

]′
Ω̂i,h

[
d̄′zy,i,h − d̄zx,iβ̂g0i ,h

− d̄zc,iϕ̂i,h

]
− 1

N

∑
h

∑
i

[
d̄′zy,i,h − d̄zx,iβ̃g0i ,h

− d̄zc,iϕ̃i,h

]′
Ω̂i,h

[
d̄′zy,i,h − d̄zx,iβ̃g0i ,h

− d̄zc,iϕ̃i,h

]
=

1

N

∑
h

∑
i

[
d̄zx,iβ

d
g0i ,h

+ d̄zc,iϕ
d
i,h + d̄zẽ,i,h

]′
Ω̂i,h

[
d̄zx,iβ

d
g0i ,h

+ d̄zc,iϕ
d
i,h + d̄zẽ,i,h

]
− 1

N

∑
h

∑
i

d̄′zẽ,i,hΩ̂i,hd̄zẽ,i,h

=
1

N

∑
h

∑
i

[
d̄zx,iβ

d
g0i ,h

+ d̄zc,iϕ
d
i,h

]′
Ω̂i,h

[
d̄zx,iβ

d
g0i ,h

+ d̄zc,iϕ
d
i,h

]
+

2

N

∑
h

∑
i

[
d̄zx,iβ

d
g0i ,h

+ d̄zc,iϕ
d
i,h

]′
Ω̂i,hd̄zẽ,i,h︸ ︷︷ ︸

=0

(52)

To show that the second term is numerically zero, notice that we can decompose it into

2
N

∑
h

∑
i

[
d̄zx,iβ

d
g0i ,h

+ d̄zc,iϕ
d
i,h

]′
Ω̂i,hd̄zẽ,i,h

= 2
N

∑
h

∑
g β

d′
g,h

(∑
i∈S0

g
d̄′zx,iΩ̂i,hd̄zẽ,i,h

)
+ 2

N

∑
h

∑
i ϕ

d′
i,h

(
d̄′zc,iΩ̂i,hd̄zẽ,i,h

) (53)

where by the FOCs (51) all terms inside the parentheses are zero.

As for the first term, let

ϕ∗d
i,h = argmin

ϕi,h

1

N

∑
h

∑
i

[
d̄zx,iβ

d
g0i ,h

+ d̄zc,iϕi,h

]′
Ω̂i,h

[
d̄zx,iβ

d
g0i ,h

+ d̄zc,iϕi,h

]
. (54)
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Then the first term is lower bounded by

1
N

∑
h

∑
i

[
d̄zx,iβ

d
g0i ,h

+ d̄zc,iϕ
d
i,h

]′
Ω̂i,h

[
d̄zx,iβ

d
g0i ,h

+ d̄zc,iϕ
d
i,h

]
⩾ 1

N

∑
h

∑
i

[
d̄zx,iβ

d
g0i ,h

+ d̄zc,iϕ
∗d
i,h

]′
Ω̂i,h

[
d̄zx,iβ

d
g0i ,h

+ d̄zc,iϕ
∗d
i,h

]
= 1

N

∑
h

∑
i β

d′
g0i ,h

(
d̄′zx,iMzc,i,hd̄zx,i

)
βd
g0i ,h

=
∑

h

∑
g β

d′
g,h

(
1
N

∑
i∈S0

g
d̄′zx,iMzc,i,hd̄zx,i

)
βd
g,h

⩾
∑

h

∑
g ∥β̃g,h − β̂g,h∥2ρg,h ⩾ maxg,h∥β̃g,h − β̂g,h∥2ρg,h

(55)

where ρg,h is some positive finite number. Here, the first inequality is obtained by construc-

tion. The second last inequality follows Assumption 1.D and 1.F, under which

plim
N,T→∞

1

N

∑
i∈S0

g

d̄′zx,iM zc,i,hd̄zx,i = plim
N→∞

1

N

∑
i∈S0

g

d′zx,iMzc,i,hdzx,i (56)

which as Lemma 3 shows is positive definite and thus lower bounded by its minimum

eigenvalue ∞ > ρg,h > 0. The last inequality follows from the fact that the summands

∥β̃g,h − β̂g,h∥2ρg,h are non-negative. Combining the two terms, we have

Q̂NT (β̂, ϕ̂, γ
0)− Q̂NT (β̃, ϕ̃, γ

0) ≥ max
g,h

∥β̃g,h − β̂g,h∥2ρg,h (57)

and so it suffices to show that the LHS is op(1).

Notice that by the Lemma 3, we have P (β ∈ Nη)
p→ 1, under which Lemma 5 shows that

the misclassification error is op(1). Therefore, we have

sup
(β,ϕ)∈Nη

| Q̂NT (β,ϕ, γ̂)− Q̂NT (β,ϕ, γ
0)| = op(NT−δ) . (58)

It follows that
0 ≤ Q̂NT (β̂, ϕ̂, γ

0)− Q̂NT (β̃, ϕ̃, γ
0)

= Q̂NT (β̂, ϕ̂, γ̂)− Q̂NT (β̃, ϕ̃, γ̂) + op(NT−δ)

≤ op(NT−δ)

. (59)

Here, the first and the last inequality are obtained by construction: given on the true group-
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ing γ0, the infeasible estimator β̃ is the minimizer, whereas given the estimated groups γ̂

(by GLP), β̂ is the minimizer.

To sum up, we have

op(NT−δ) ⩾ max
g,h

∥β̃g,h − β̂g,h∥2ρg,h (60)

for some positive finite number ρg,h, which implies that ∥β̃g,h − β̂g,h∥ = op(NT−δ) for all g

and h.

■
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S4.3 Theorem 2

Proof. To derive the asymptotic distribution, I follow Fernández-Val and Lee (2013) to

expand the FOC to higher order. For later use, denote the first order conditions with known

group structure by

ζ(βj,h, ϕ(βj,h)) =
1

Nj

∑
i∈S0

j

d̄′zx,iΩ̂i,h

(
d̄zy,i,h − d̄zx,iβj,h − d̄zc,iϕ(βj,h)

)
= 0 . (61)

and

ξ(βj,h, ϕ(βj,h)) = d̄′zc,iΩ̂i,h

(
d̄zy,i,h − d̄zx,iβj,h − d̄zc,iϕ(βj,h)

)
= 0 . (62)

Expand (61) around parameters β0
j,h and ϕ̃(β0

j,h), where ·̃ indicates that ϕ̃(β0
j,h) solves (62)

given β0
j,h. We have

0 = ζ(β0
j,h, ϕ̃(β

0
j,h)) +

dζ(β0
j,h, ϕ̃(β

0
j,h))

dβ′

∣∣
β
× (β̃j,h − β0

j,h) (63)

for some β between β0
j,h and β̃j,h. Multiply both sides by NjT , we have

dζ(β0
j,h, ϕ̃(β

0
j,h))

dβ′

∣∣
β

√
NjT (β̃j,h − β0

j,h) = −
√
NjTζ(β

0
j,h, ϕ̃(β

0
j,h)) (64)

Therefore, the proof proceeds in three steps: First, we need to show that

dζ(β0
j,h, ϕ̃(β

0
j,h))

dβ′

∣∣
β

p→ −Σj,h (65)

Second, we need to show that

√
NjTζ(β

0
j,h, ϕ̃(β

0
j,h))

d→ N(κB,Ψj,h) (66)

The asymptotic normality of the infeasible estimator follows immediately from the first two

results. Finally, I show that the GLP estimator is asymptotically equivalent to the infeasible
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counterpart.

Part I. Taking the derivatives of (61), we have

dζ(β0
j,h, ϕ̃(β

0
j,h))

dβ

∣∣
β
= − 1

Nj

∑
i∈S0

j

d
′
zx,iΩ̂i,hdzx,i −

1

Nj

∑
i∈S0

j

d̄′zx,iΩ̂i,hd̄
′
zc,i

∂ϕ(β)

∂β

∣∣
β
. (67)

Similarly, taking derivatives of (62) and evaluating at β, we have

−d̄′zc,iΩ̂i,hd̄zx,i − d̄′zc,iΩ̂i,hd̄zc,i
∂ϕ(β)

∂β

∣∣
β
= 0 (68)

Next by Lemma 6, we have (uniformly over i),

0 =− d′zc,iΩi,hdzx,i − d̄′zc,iΩ̂i,hd̄zc,i
∂ϕ(β)

∂β

∣∣
β

=− d′zc,iΩi,hdzx,i + op(1)− (op(1) + d′zc,iΩi,hdzc,i)
∂ϕ(β)

∂β

∣∣
β

=⇒ ∂ϕ(β)

∂β

∣∣
β
=−

(
d′zc,iΩi,hdzc,i

)−1
d′zc,iΩi,hdzx,i + op(1)

(69)

Substitute it back to (67), we have

dζ(β0
j,h, ϕ̃(β

0
j,h))

dβ

∣∣
β

=− 1

Nj

∑
i∈S0

j

d
′
zx,iΩ̂i,hdzx,i −

1

Nj

∑
i∈S0

j

d̄′zx,iΩ̂i,hd̄
′
zc,i

∂ϕ(β)

∂β

∣∣
β
.

=− 1

Nj

∑
i∈S0

j

d′zx,iΩi,hdzx,i +
1

Nj

∑
i∈S0

j

d′zx,iΩi,hd
′
zc,i

(
d′zc,iΩi,hdzc,i

)−1
d′zc,iΩi,hdzx,i + op(1)

=− 1

Nj

∑
i∈S0

j

d′zx,iMzc,i,hdzx,i + op(1)

(70)

which gives Part I. Specifically, in the above derivation, the op(1) terms remain bounded
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because Lemma 6 holds uniformly over i. For instance, we have

− 1
Nj

∑
i∈S0

j
d
′
zx,iΩ̂i,hdzx,i

= − 1
Nj

∑
i∈S0

j
d′zx,iΩi,hdzx,i +

(
1
Nj

∑
i∈S0

j
d′zx,iΩi,hdzx,i − 1

Nj

∑
i∈S0

j
d
′
zx,iΩ̂i,hdzx,i

)
≤ − 1

Nj

∑
i∈S0

j
d′zx,iΩi,hdzx,i + supi

(
d′zx,iΩi,hdzx,i − d

′
zx,iΩ̂i,hdzx,i

)
≤ − 1

Nj

∑
i∈S0

j
d′zx,iΩi,hdzx,i + op(1)

(71)

Part II. The FOC for the infeasible estimator evaluated at β0
j,h, ϕ̃(β

0
j,h) gives

ζ(β0
j,h, ϕ̃(β

0
j,h)) =

1

Nj

∑
i∈S0

j

d̄′zx,iΩ̂i,h

(
d̄zy,i,h − d̄zx,iβ

0
j,h − d̄zc,iϕ̃(β

0
j,h)
)

=
1

Nj

∑
i∈S0

j

d̄′zx,iΩ̂i,hd̄zc,i

(
ϕ0
i,h − ϕ̃(β0

j,h)
)
+

1

Nj

∑
i∈S0

j

d̄′zx,iΩ̂i,hd̄zϵ,i,h

(72)

To derive the stochastic expansion of ζ(β0
j,h, ϕ̃(β

0
j,h)) we need to expand ϕ0

i,h − ϕ̃(β0
j,h). First,

from the FOC of individual parameters (62), we have

0 = ξ(β0
j,h, ϕ̃(β

0
j,h)) =d̄′zc,iΩ̂i,h

(
d̄zy,i,h − d̄zx,iβ

0
j,h − d̄zc,iϕ̃(β

0
j,h)
)

=d̄′zc,iΩ̂i,hd̄zϵ,i,h + d̄′zc,iΩ̂i,hd̄zc,i

(
ϕ0
i,h − ϕ̃(β0

j,h)
) (73)

which gives the individual estimator

(
ϕ0
i,h − ϕ̃(β0

j,h)
)
= −

(
d̄′zc,iΩ̂i,hd̄zc,i

)−1

d̄′zc,iΩ̂i,hd̄zϵ,i,h (74)
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Denote Ozc,i,h = d̄′zc,iΩ̂i,hd̄zc,i. By add and subtract, we have

Õ−1
zc,i,hd̄

′
zc,iΩ̂i,hd̄zϵ,i,h

=
[
Õ−1

zc,i,h −O−1
zc,i,h +O−1

zc,i,h

]
×
[
d̄zc,i − dzc,i + dzc,i

]′ × [Ω̂i,h − Ωi,h + Ωi,h

]
d̄zϵ,i,h

=
[
Õ−1

zc,i,h −O−1
zc,i,h +O−1

zc,i,h

]
×
[(
d̄zc,i − dzc,i

)′ (
Ω̂i,h − Ωi,h

)
+
(
d̄zc,i − dzc,i

)′
Ωi,h

+ dzc,i

(
Ω̂i,h − Ωi,h

)
+ dzc,iΩi,h

]
d̄zϵ,i,h

=
[
Õ−1

zc,i,h −O−1
zc,i,h +O−1

zc,i,h

]
×
[(
d̄zc,i − dzc,i

)′
Ωi,h

+ dzc,i

(
Ω̂i,h − Ωi,h

)
+ dzc,iΩi,h

]
+ op(1)

=O−1
zc,i,h

[(
d̄zc,i − dzc,i

)′
Ωi,h + dzc,i

(
Ω̂i,h − Ωi,h

)
+ dzc,iΩi,h

]
d̄zϵ,i,h + op(1)

=[A1 + A2 + A3]d̄zϵ,i,h + op(1)

(75)

Consider the first term in the last equality. Multiply it by dzϵ,i,h we have

O−1
zc,i,h

(
d̄zc,i − dzc,i

)′
Ωi,hdzϵ,i,h

=O−1
zc,i,h

(
1

T

∑
t

zi,tc
′
i,t − E[zi,tc′i,t]

)′

Ωi,h

(
1

T

∑
t

zi,tϵi,t+h

)

=
1√
T
O−1

zc,i,h

(
1√
T

∑
t

zi,tc
′
i,t − E[zi,tc′i,t]

)′

Ωi,h

(
1√
T

∑
t

zi,tϵi,t+h

) (76)

where we have

1√
T

∑
t

zi,tc
′
i,t − E[zi,tc′i,t] = Op(1),

1√
T

∑
t

zi,tϵi,t+h = Op(1) (77)

and thus this term is Op(
1√
T
), we will formally show this later, since we need to sum over i.

Now substitute A1 + A2 + A3 + op(1) back to the group-parameter FOC, and as before,
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in each step we “drop” terms involving two (or more) estimation errors:

ζ(β0
j,h, ϕ̃(β

0
j,h))

=
1

Nj

∑
i∈S0

j

d̄′zx,iΩ̂i,hd̄zc,i

(
ϕ0
i,h − ϕ̃(β0

j,h)
)
+

1

Nj

∑
i∈S0

j

d̄′zx,iΩ̂i,hd̄zϵ,i,h

=− 1

Nj

∑
i∈S0

j

d̄′zx,iΩ̂i,hd̄zc,i (A1 + A2 + A3) dzϵ,i,h +
1

Nj

∑
i∈S0

j

d̄′zx,iΩ̂i,hd̄zϵ,i,h + op(1)

=
1

Nj

∑
i∈S0

j

d̄′zx,iΩ̂i,h

[
I − d̄zc,i (A1 + A2 + A3)

]
dzϵ,i,h + op(1)

(78)

First consider

d̄′zx,iΩ̂i,h =
[
d̄zx,i − dzx,i + dzx,i

]′ [
Ω̂i,h − Ωi,h + Ωi,h

]
=
(
d̄zx,i − dzx,i

)′ (
Ω̂i,h − Ωi,h

)
+
(
d̄zx,i − dzx,i

)′
Ωi,h

+ d′zx,i

(
Ω̂i,h − Ωi,h

)
+ d′zx,iΩi,h + op(1)

=
(
d̄zx,i − dzx,i

)′
Ωi,h + d′zx,i

(
Ω̂i,h − Ωi,h

)
+ d′zx,iΩi,h + op(1)

=B1 +B2 +B3 + op(1)

(79)

Next, consider

d̄′zx,iΩ̂i,hdzc,i[A1 + A2 + A3]

=(B1 +B2 +B3)(dzc,i − dzc,i + dzc,i)[A1 + A2 + A3] + op(1)

=(B1 +B2 +B3)(dzc,i − dzc,i + dzc,i)[A1 + A2 + A3] + op(1)

=
(
B1dzc,i +B2dzc,i +B3(dzc,i − dzc,i) + B3dzc,i

)
[A1 + A2 + A3] + op(1)

=B1dzc,iA3 +B2dzc,iA3

+B3(dzc,i − dzc,i)A3 +B3dzc,iA1 +B3dzc,iA2 +B3dzc,iA3 + op(1)

(80)
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In total, we keep nine terms, listed below:

B1dzϵ,i,h =
(
d̄zx,i − dzx,i

)′
Ωi,hdzϵ,i,h

B1dzc,iA3dzϵ,i,h =
(
d̄zx,i − dzx,i

)′
Ωi,hdzc,iO−1

zc,i,hdzc,iΩi,hdzϵ,i,h

B2dzϵ,i,h =d′zx,i

(
Ω̂i,h − Ωi,h

)
dzϵ,i,h

B2dzc,iA3dzϵ,i,h =d′zx,i

(
Ω̂i,h − Ωi,h

)
dzc,iO−1

zc,i,hdzc,iΩi,hdzϵ,i,h

B3dzc,iA2dzϵ,i,h =d′zx,iΩi,hdzc,iO−1
zc,i,hdzc,i

(
Ω̂i,h − Ωi,h

)
dzϵ,i,h

B3(dzc,i − dzc,i)A3dzϵ,i,h =d′zx,iΩi,h(dzc,i − dzc,i)O−1
zc,i,hdzc,iΩi,hdzϵ,i,h

B3dzc,iA1dzϵ,i,h =d′zx,iΩi,hdzc,iO−1
zc,i,h

(
d̄zc,i − dzc,i

)′
Ωi,hdzϵ,i,h

B3dzϵ,i,h =d′zx,iΩi,hdzϵ,i,h

B3dzc,iA3dzϵ,i,h =d′zx,iΩi,hdzc,iO−1
zc,i,hdzc,iΩi,hdzϵ,i,h

(81)

To finish the proof, we need to derive the asymptotic distribution of the above terms. We

first collect the terms by defining:

B1 =
1

Nj

∑
i∈S0

j

B1dzϵ,i,h − B1dzc,iA3dzϵ,i,h

=
1

Nj

∑
i∈S0

j

(
d̄zx,i − dzx,i

)′ [
Ωi,h − Ωi,hdzc,iO−1

zc,i,hdzc,iΩi,h

]
dzϵ,i,h

=
1

NjT 2

∑
i∈S0

j

∑
t

∑
s

(
zi,tx

′
i,t − Ezi,tx′

i,t

)′
Mzc,i,hzi,sϵi,s+h (82)

B2 =
1

Nj

∑
i∈S0

j

B2dzϵ,i,h − B2dzc,iA3dzϵ,i,h − B3dzc,iA2dzϵ,i,h

=
1

Nj

∑
i∈S0

j

d′zx,i

(
Ω̂i,h − Ωi,h

) [
I − dzc,idzϵ,i,hO−1

zc,i,hdzc,iΩi,h

]
dzϵ,i,h

− 1

Nj

∑
i∈S0

j

d′zx,iΩi,hdzc,iO−1
zc,i,hdzc,i

(
Ω̂i,h − Ωi,h

)
dzϵ,i,h

=
1

Nj

∑
i∈S0

j

d′zx,i

(
Ω̂i,h − Ωi,h

)
Ω−1

i,hMzc,i,hdzϵ,i,h
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− 1

Nj

∑
i∈S0

j

d′zx,iΩi,hdzc,iO−1
zc,i,hdzc,i

(
Ω̂i,h − Ωi,h

)
dzϵ,i,h (83)

B3 =− 1

Nj

∑
i∈S0

j

B3(dzc,i − dzc,i)A3dzϵ,i,h

=
1

Nj

∑
i∈S0

j

d′zx,iΩi,h(dzc,i − dzc,i)O−1
zc,i,hdzc,iΩi,hdzϵ,i,h (84)

B4 =− 1

Nj

∑
i∈S0

j

B3dzc,iA1dzϵ,i,h

=
1

Nj

∑
i∈S0

j

d′zx,iΩi,hdzc,iO−1
zc,i,h

(
d̄zc,i − dzc,i

)′
Ωi,hdzϵ,i,h (85)

We now show that these terms are O( 1
T
). The proofs follow similar strategy and I derive

here for B1. Multiplied by
√

NjT , we have

√
NjTB1 =

1

N
1/2
j T 3/2

∑
i∈S0

j

∑
t

∑
s

(
xi,tz

′
i,t − Exi,tz

′
i,t

)
Mzc,i,hzi,sϵi,s+h (86)

For notational simplicity, we define ωi,t =
(
xi,tz

′
i,t − Exi,tz

′
i,t

)
Mzc,i,h and ηi,s = zi,sϵi,s+h.

Notice that since Mzc,i,h is nonstochastic, we have

Eωi,t = E
(
xi,tz

′
i,t − Exi,tz

′
i,t

)
Mzc,i,h = 0 . (87)

We then rewrite B1 as

√
NjTB1 =

1

N
1/2
j T 3/2

∑
i∈S0

j

∑
t

∑
s

Eωi,tηi,s +
1

N
1/2
j T 3/2

∑
i∈S0

j

∑
t

∑
s

(ωi,tηi,s − Eωi,tηi,s) (88)

We then bound the RHS of the above equation. First, denote by ι1 some arbitrary nonrandom

vector with unit norm, we have

1

N
1/2
j T 3/2

∑
i∈S0

j

∑
t

∑
s

E
[
ι1xi,tz

′
i,tMzc,i,hzi,sϵi,s+h

]
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⩽ 1

N
1/2
j T 3/2

∑
i∈S0

j

∑
t

∑
s

∣∣E [ι1xi,tz
′
i,tMzc,i,hzi,sϵi,s+h

]∣∣
=

√
Nj

T

1

NjT

∑
i∈S0

j

∑
t

∑
s

∣∣E [ι1xi,tz
′
i,tMzc,i,hzi,sϵi,s+h

]
− E

[
ι1xi,tz

′
i,tMzc,i,h

]
E [zi,sϵi,s+h]

∣∣
⩽
√

Nj

T

1

NjT

∑
i∈S0

j

∑
t

∑
s

8

∥∥∥∥∥ι1xi,tz
′
i,tMzc,i,h

∥∥∥∥∥
q∥∥∥∥∥zi,sϵi,s+h

∥∥∥∥∥
q

α(|t− s|)1−2/q (89)

where the last inequality is obtained by Davydov inequality. By Assumption 1.D and 1.E

we can set q = 4(1 + δ). Moreover, recall that Mzc,i,h is nonstochastic and finite so by

Cauchy-Schwarz inequality, only the moment bound for xi,tzi,t is needed. Combined with

Assumption 1.B, leads to
∑

t

∑
s α(|t− s|)1−1/2(1+δ) = O(T ) and thus

1

N
1/2
j T 3/2

∑
i∈S0

j

∑
t

∑
s

E
[
ι1xi,tz

′
i,tMzc,i,hzi,sϵi,s+h

]
⩽ Op

(√
Nj

T

)
. (90)

Second, using a similar strategy, we have

E

 1

N
1/2
j T 3/2

∑
i∈S0

j

∑
t

∑
s

(ωi,tηi,s − E [ωi,tηi,s])

2

=
1

NjT 3

∑
i∈S0

j

∑
t

∑
s

∑
m

∑
r

E (ωi,tηi,s − E [ωi,tηi,s]) (ωi,mηi,r − E [ωi,mηi,r])

=
1

NjT 3

∑
i∈S0

j

∑
t

∑
s

∑
m

∑
r

E (ωi,tηi,sωi,mηi,r)− E [ωi,tηi,s]E [ωi,mηi,r]

⩽ 1

NjT 3

∑
i∈S0

j

∑
t

∑
s

∑
m

∑
r

8

∥∥∥∥∥ωi,tηi,s

∥∥∥∥∥
q∥∥∥∥∥ωi,mηi,r

∥∥∥∥∥
q

α(|t− s−m− r|)1−2/q . (91)

We can then similarly obtain and upper bound by Assumption 1.B, 1.D and 1.E that

E

 1

N
1/2
j T 3/2

∑
i∈S0

j

∑
t

∑
s

(ηi,tξi,s − E [ηi,tξi,s])

2

⩽ Op(
1

T
) (92)
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and thus
1

N
1/2
j T 3/2

∑
i∈S0

j

∑
t

∑
s

(ηi,tξi,s − E [ηi,tξi,s]) = Op(T
−1/2) = op(1) . (93)

In conclusion, the bias term B1 is dominated by the first term

E
[(
xi,tz

′
i,t − Exi,tz

′
i,t

)
Mzc,i,hzi,sϵi,s+h

]
which leads to asymptotic bias. The remaining terms B2,B3 and B4 are bounded similarly.

Having established the asymptotic properties of the bias terms, it remains to show the

asymptotic distribution. Specifically, we have

V =
1

Nj

∑
i∈S0

j

B3dzϵ,i,h − B3dzc,iA3dzϵ,i,h

=
1

Nj

∑
i∈S0

j

d′zx,i
[
Ωi,h − Ωi,hdzc,iO−1

zc,i,hdzc,iΩi,h

]
dzϵ,i,h

=
1

NjT

∑
i∈S0

j

∑
t

d′zx,iMzc,i,hzi,tϵi,t+h

(94)

Assumptions 1.B, 1.D, 1.E and 3.A guarantee that we have

1√
NjT

∑
i∈S0

j

∑
s

E
[
xi,tz

′
i,t

]
Mzc,i,hzi,sϵi,s+h

d→ N(0,Ψj,h) (95)

by standard central limit theorem, e.g. Lemma 3 in (Hahn and Kuersteiner, 2011).

We are now ready to show the asymptotic distribution. Using (72), we have

√
NjTζ(β

0
j,h, ϕ̃(β

0
j,h))

=
√

NjT (V + B1 + B2 + B3 + B4) + op(1)

(96)

with
√

NjTV
d→ N(0,Ψj,h), and

√
NjT (B1 + B2 + B3 + B4) = O(

√
Nj/T ). Combined with

results from part I, the asymptotic distribution of the infeasible estimator follows.
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Part III. By Theorem 1, we have

√
NjT (β̂j,h − β̃j,h) = op

(√
NjNT

1
2

T δ

)
. (97)

Under the assumption that Nj/T = κj and Nj/N = πj with κj ∈ [0,∞) and πj ∈ (0, 1), we

have √
NjNT

1
2

T δ
=

κ2
j

πj

T 2−δ (98)

which converges to zero if we set δ > 2. This completes the proof. ■
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S4.4 Proposition 1

Proof. We introduce some new notations in this section to discuss the group number selec-

tion. Specifically, we denote the objective function in the main text (4) by the following

{β̂G
, ϕ̂

G
, γ̂G} = argmin

β∈ΘG,ϕ∈ΦN ,γ∈G(G)

Q̂NT (β,ϕ, γ) , (99)

where the subscript G explicitly indicates the dependence on the number of groups. The

minimized objective is Q̂NT,G = minβ∈ΘG,ϕ∈ΦN ,γ∈GG
Q̂NT (β,ϕ, γ). That is, we assume that

we can obtain the global minimizer.

To prove the proposition, let us consider two cases.

Case I: Under-select number of groups Ĝ < G0. By the definition of the proposed

criterion (15), we want to show that

P

min
G<G0

Q̂NT,G − Q̂NT,G0 + ϱN,T Q̂NT,Gmax(G−G0)(H + 1)︸ ︷︷ ︸
p→0−, by 4.B

> 0

→ 1 . (100)

Note that by Theorem 1 and Lemma 4, we have β̂G p→ β̂
0
, ϕ̂

G p→ ϕ̂
0. Then by the continuous

mapping theorem, we have Q̂NT,G0
p→ Q0.

Furthermore, by Assumption 4.A we have

min
1≤G<G0

inf
γ∈G(G)

Q̂NT,G
p→ Q > Q0 (101)

and thus

min
G<G0

Q̂NT,G − Q̂NT,G0 + ϱN,T Q̂NT,Gmax(G−G0)(H + 1)

p→Q−Q0 + op(1) > 0

and thus (100) holds.
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Case II: Over-select number of groups Ĝ > G0. By definition, we want to show that

P
(

min
G0<G≤Gmax

IC(G) > IC(G0)

)
→ 1 (102)

It is equivalent to show that there exists some a > 0 such that

P

min
G>G0

T a(Q̂NT,G − Q̂NT,G0) + T aϱN,T Q̂NT,Gmax(G−G0)(H + 1)︸ ︷︷ ︸
p→∞+, by4.B

> 0

→ 1 . (103)

Given that the second component converges to (positive) infinity, a sufficient condition for

the above is that

T a(Q̂NT,G − Q̂NT,G0) = Op(1) . (104)

However, it is generally difficult to compare GLP estimates with different number of groups.

Notice that by add and subtract, we can rewrite the above as

T a(Q̂NT,G − Q̂NT (β
0,ϕ0, γ0) + Q̂NT (β

0,ϕ0, γ0)− Q̂NT,G0) = Op(1) . (105)

Therefore, it is enough to show that there exists some a > 0 such that we instead show that

T a
∣∣Q̂NT,G(β,ϕ, γ)− Q̂NT (β

0,ϕ0, γ0)
∣∣ ≤ Op(1) . (106)

By Lemma 2 (notice that we have not used the assumption of G = G0 in the lemma):

QNT,G(β̂, ϕ̂, γ̂) = Q̂NT,G(β̂, ϕ̂, γ̂) + op(NT−δ)

≤ Q̂NT (β
0,ϕ0, γ0) + op(NT−δ) = QNT (β

0,ϕ0, γ0) + op(NT−δ)
(107)

and thus ∣∣Q̂NT,G(β,ϕ, γ)− Q̂NT (β
0,ϕ0, γ0)

∣∣ = op(NT−δ) (108)

■
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S5 Proofs of Lemmas

S5.1 Lemma 1

Proof. The proof for the uniform convergence of zi,tw
′
i,t and zi,tϵi,t+h are almost identical,

and hence we focus on the former here. Denote by Ai =
1
T

∑
t Ai,t =

1
T

∑
t zi,tw

′
i,t−E[zi,tw′

i,t],

an L×K matrix. By Boole’s inequality, we have

P
(
sup
i

∥∥∥∥Ai

∥∥∥∥ ≥ ν̃

)
≤N sup

i
P
(∥∥∥∥Ai

∥∥∥∥ ≥ ν̃

)
≤N sup

i
P

(∑
l

∑
k

∥∥∥∥Ai,l,k

∥∥∥∥ ≥ ν̃

)

≤NLK sup
i

sup
l,k

P

(∣∣∣∣ 1T ∑
t

Ait,l,k

∣∣∣∣ ≥ ν̃/
√
LK

)
(109)

We would like to evaluate the RHS using Lemma 7. To do so, let us verify conditions (i) and

(ii) of the Lemma. First notice that Ait,l,k = zi,t,lwi,t,k − Ezi,t,lwi,t,k is mean-zero, stationary

strong mixing with desired mixing coefficients by Assumption 1.B. So condition (i) follows.

By Assumption 1.C, the tail property (ii) is also satisfied. Therefore, Lemma 7 gives (where

Xt = Ait,l,k, 4λ = T ν̃/
√
LK and r = T 1/2)

NLK sup
i

sup
l,k

P

(∣∣∣∣ 1T ∑
t

Ait,l,k

∣∣∣∣ ≥ ν̃/
√
LK

)

=NLK sup
i

sup
l,k

P

(∣∣∣∣∑
t

Ait,l,k

∣∣∣∣ ≥ T ν̃/
√
LK

)

≤NLK

4

(
1 +

√
T ν̃2

16LKM

)−
√
T/2

+
16C

√
LK

ν̃
exp

[
−c1

( √
T ν̃

4c3
√
LK

)c]
(110)

where M = supt>0

(
E(A2

it,l,k) + 2
∑

s>t |E(Ait,l,kAis,l,k)|
)
.

It remains to show the convergence rate of the RHS. We start by showing M < ∞ using
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the Davydov inequality from Lemma 8. Specifically, for s > t and let p = q = 4(1 + δ),

E
∣∣Ait,l,kAis,l,k

∣∣ ≤ 8 (α(s− t))1−
1

2(1+δ)
(
E
[
|Ai1,l,k|4(1+δ)

]) 1
2(1+δ) . (111)

Then under Assumption 1.D (or Assumption 1.E when we consider Ait,l = zit,lϵi,t+h), there

exists some finite positive number C such that

E
∣∣Ai1,l,k

∣∣2 + 2
∑
s>t

∣∣EAit,l,kAis,l,k

∣∣ ≤ C
∑
s>0

(α(s))1−
1

2(1+δ) < ∞ (112)

and thus M < ∞.

Next we aim to show the following: for any ν̃ > 0, we have for all δ > 0,

T δ
(
1 +

√
T ν̃2

16LKM

)−√
T/2

→ 0 as T → ∞

T δ 1
ν̃
exp

[
−c1

( √
T ν̃

4c3
√
LK

)c]
→ 0 as T → ∞

. (113)

Consider for example the first part. Denote ν = ν̃2/(16LKM). It is equivalent to show that

δ lnT − 1
2

√
T ln(1 + νT 1/2) converges to −∞ as T → ∞. Given an arbitrary ν > 0, we have

ln(1 + νT 1/2) > 1 for sufficiently large T . Therefore, for sufficiently large T ,

δ lnT − 1

2

√
T ln(1 + νT 1/2) < δ lnT − 1

2

√
T (114)

and the RHS converges to −∞ as T → ∞. Similarly for the second part, it is equivalent to

show that 1
ν̃
exp

[
δ lnT − T c/2ν

]
→ 0 with some arbitrary positive ν̃, ν and c, which trivially

holds as δ lnT −T c/2ν converges to −∞. Therefore, we have established that for any ν̃ > 0,

we have for all δ > 0,

4

(
1 +

√
T ν̃2

16LKM

)−
√
T/2

+
16C

√
LK

ν̃
exp

[
−c1

( √
T ν̃

4c3
√
LK

)c]
= o(T−δ) (115)
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and thus

P
(
sup
i

∥∥∥∥Ai

∥∥∥∥ ≥ ν̃

)
= o(NT−δ) . (116)

■

48



S5.2 Lemma 2

Proof. By definition, we have for any β ∈ Θ, ϕ ∈ Φ

∣∣Q̂iTh(β, ϕ)−QiTh(β, ϕ)
∣∣

=
∣∣m̂′

i,hΩ̂i,hm̂i,h −mi,hΩi,hmi,h

∣∣
=
∣∣m̂′

i,hΩ̂i,hm̂i,h − m̂′
i,hΩi,hm̂i,h + m̂′

i,hΩi,hm̂i,h −mi,hΩi,hmi,h

∣∣
≤
∣∣m̂′

i,h(Ω̂i,h − Ωi,h)m̂i,h

∣∣+ ∣∣m̂′
i,hΩi,hm̂i,h −mi,hΩi,hmi,h

∣∣
=
∣∣m̂′

i,h(Ω̂i,h − Ωi,h)m̂i,h −m′
i,h(Ω̂i,h − Ωi,h)mi,h +m′

i,h(Ω̂i,h − Ωi,h)mi,h

∣∣
+
∣∣(m̂i,h −mi,h)

′Ωi,h(m̂i,h −mi,h) + 2m′
i,hΩi,h(m̂i,h −mi,h)

∣∣
≤
∣∣(m̂i,h −mi,h)

′(Ω̂i,h − Ωi,h)(m̂i,h −mi,h) + 2m′
i,h(Ω̂i,h − Ωi,h)(m̂i,h −mi,h)

∣∣
+
∣∣m′

i,h(Ω̂i,h − Ωi,h)mi,h

∣∣
+
∣∣(m̂i,h −mi,h)

′Ωi,h(m̂i,h −mi,h)
∣∣+ 2

∣∣m′
i,hΩi,h(m̂i,h −mi,h)

∣∣
≤∥m̂i,h −mi,h∥2

[
∥Ωi,h∥+ ∥Ω̂i,h − Ωi,h∥

]
+ 2∥mi,h∥∥m̂i,h −mi,h∥

[
∥Ωi,h∥+ ∥Ω̂i,h − Ωi,h∥

]
+ ∥mi,h∥2∥Ω̂i,h − Ωi,h∥

(117)

where we have repeatedly used the triangle inequality, the matrix identity (29) and the

matrix inequalities (27).

Next, we take the supremum oevr i and β ∈ Θ, ϕ ∈ Φ. Since both sides are positive,

it boils down to taking the supremum over for each individual terms. Let us examine each

terms separately. First, consider mi,h. Plug in the definition, we have3

mi,h(β, ϕ) = E[m̂i,h(β, ϕ)] = E[dzy,i,h − dzx,iβ − dzc,iϕ]

= E
[
zitx

′
it

(
β0
g0i ,h

− β
)
+ zitc

′
it

(
ϕ0
i,h − ϕ

)
+ zitϵit+h

]
= dzx,i

(
β0
g0i ,h

− β
)
+ dzc,i

(
ϕ0
i,h − ϕ

)
= dzw,i(θ

0
i,h − θ)

(118)

where with a slight abuse of notation, I write θ = (β′, ϕ′)′. Taking the supremum gives, for
3I use here mi,h(β, ϕ) to explicitly indicate that the moment function is a function of β and ϕ.
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all h = 0, . . . , H ,

sup
i

sup
β∈Θ,ϕ∈Φ

∥mi,h(β, ϕ)∥

≤ sup
i

∥dzw,i∥ sup
i

sup
β∈Θ,ϕ∈Φ

∥θ0i,h − θ∥

≤
(
sup
i

E∥zi,tw′
i,t∥
)(

sup
i

sup
β∈Θ,ϕ∈Φ

∥θ0i,h − θ∥
)

< ∞

. (119)

The first inequality follows from Cauchy-Schwarz inequality (26); the second inequality ap-

plies Jensen’s inequality to the expectation operator; the last inequality comes from As-

sumption 1.D and 1.A. In particular, Assumption 1.A states that the parameter space Θ

and Φ are compact. Therefore, there exists some finite constants ∞ > C1 > 0 such that

Diam(Θ),Diam(Φ) ≤ C1. Given (119), it follows immediately that

sup
i

sup
β∈Θ,ϕ∈Φ

∥mi,h(β, ϕ)∥2 < ∞ . (120)

Second, by Assumption 1.F the weighting matrix Ωi,h is finite positive definite, then there

exists some finite positive constant C3 such that supi ∥Ωi,h∥ < C3 < ∞. Moreover, we also

assume that supi ∥Ω̂i,h − Ωi,h∥ = op(1).

Third, expanding m̂i,h −mi,h gives

m̂i,h(β, ϕ)−mi,h(β, ϕ) = (dzw,i − dzw,i)
(
θ0i,h − θ

)
+ dzϵ,i,h (121)

Taking the supremum gives

sup
i

sup
β∈Θ,ϕ∈Φ

∥(m̂i,h −mi,h)(β, ϕ)∥

≤ sup
i

∥dzw,i − dzw,i∥ sup
i

sup
β∈Θ,ϕ∈Φ

∥θ0i,h − θ∥+ sup
i

∥dzϵ,i,h∥ = op(NT−δ)

(122)

where the last equality follows from Lemma 1, and we again use the assumption that the
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parameter space is compact. Given (122), it follows immediately that

supi supβ∈Θ,ϕ∈Φ ∥(m̂i,h −mi,h)(β, ϕ)∥2

= supi supβ∈Θ,ϕ∈Φ ∥(dzw,i − dzw,i)(θ
0
i,h − θi,h) + dzϵ,i,h∥2

≤ 2 supi ∥dzw,i − dzw,i∥2 supi supβ∈Θ,ϕ∈Φ ∥θ0i,h − θ∥2 + 2∥dzϵ,i,h∥2 = op(NT−δ)

. (123)

Now combine the results above, and taking supremum over i and the parameter space

β ∈ Θ, ϕ ∈ Φ of (168), we have

supi supβ∈Θ, ϕ∈Φ
∣∣Q̂iTh(βgi,h, ϕi,h)−QiTh(βgi,h, ϕi,h)

∣∣
≤ supi supβ∈Θ, ϕ∈Φ ∥m̂i,h −mi,h∥2

[
∥Ωi,h∥+ ∥Ω̂i,h − Ωi,h∥

]
+2 supi supβ∈Θ, ϕ∈Φ ∥mi,h∥∥m̂i,h −mi,h∥

[
∥Ωi,h∥+ ∥Ω̂i,h − Ωi,h∥

]
+supi supβ∈Θ, ϕ∈Φ ∥mi,h∥2∥Ω̂i,h − Ωi,h∥

≤ C1 supi ∥dzw,i − dzw,i∥+ C2 supi ∥dzϵ,i,h∥+ C3 supi ∥Ω̂i,h − Ωi,h∥

≤ (C1 + C2 + C3)o(NT−δ) = op(NT−δ)

(124)

where C1, C2, C3 are some finite positive constant and the last inequality follows from

Lemma 1.

Part II follows immediately:

sup
β∈ΘG,ϕ∈ΦN ,γ∈G

∣∣Q̂NT (β,ϕ, γ)−QNT (β,ϕ, γ)
∣∣

≤ sup
β∈ΘG,ϕ∈ΦN ,γ∈G

∣∣ 1
N

∑
i

∑
h

[
Q̂iTh(βgi,h, ϕi,h)−QiTh(βgi,h, ϕi,h)

] ∣∣
≤Hmax

h
sup
i

sup
β∈Θ, ϕ∈Φ

∣∣Q̂iTh(β, ϕ)−QiTh(β, ϕ)
∣∣ ≤ Hop(1) = op(1) .

(125)

■
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S5.3 Lemma 3

Proof. For notational simplicity, denote βd
i,h = β0

g0i ,h
− βgi,h and ϕd

i,h = ϕ0
i,h − ϕi,h. By

definition (35), we have

QNT (β,ϕ, γ)−QNT (β
0,ϕ0, γ0)

=
1

N

∑
h

∑
i

[
dzx,iβ

d
i,h + dzc,iϕ

d
i,h

]′
Ωi,h

[
dzx,iβ

d
i,h + dzc,iϕ

d
i,h

]
. (126)

Define ϕd∗
i,h to be the minimizer of the above objective function, i.e.

ϕd∗
i,h = argmin

ϕd
i,h

1

N

∑
h

∑
i

[
dzx,iβ

d
i,h + dzc,iϕ

d
i,h

]′
Ωi,h

[
dzx,iβ

d
i,h + dzc,iϕ

d
i,h

]
(127)

First order condition for this minimization problem gives

d′zc,iΩi,h

(
dzx,iβ

d
i,h + dzc,iϕ

d∗
i,h

)
= 0 (128)

and thus

ϕd∗
i,h = −

[
d′zc,iΩi,hdzc,i

]−1 [
d′zc,iΩi,hdzx,i

]
βd
i,h . (129)

Using the definition of ϕd∗
i,h and the first order condition, we have

QNT (β,ϕ, γ)−QNT (β
0,ϕ0, γ0)

⩾ 1

N

∑
h

∑
i

[
dzx,iβ

d
i,h + dzc,iϕ

d∗
i,h

]′
Ωi,h

[
dzx,iβ

d
i,h + dzc,iϕ

d∗
i,h

]
=

1

N

∑
h

∑
i

(β0
g0i ,h

− βgi,h)
′ (d′zx,iMzc,i,hdzx,i

)
(β0

g0i ,h
− βgi,h)

=
1

N

∑
h

∑
i

∑
g

∑
g̃

1{g0i = g}1{gi = g̃}(β0
g,h − βg̃,h)

′ (d′zx,iMzc,i,hdzx,i
)
(β0

g,h − βg̃,h)

=
∑
h

∑
g

∑
g̃

(β0
g,h − βg̃,h)

′

[
1

N

∑
i

1{g0i = g, gi = g̃}
(
d′zx,iMzc,i,hdzx,i

)]
(β0

g,h − βg̃,h)

⩾
∑
h

∑
g

∑
g̃

ρmin,gg̃,h∥β0
g,h − βg̃,h∥2
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where Mzc,i,h = Ωi,h − Ωi,hdzc,i(d
′
zc,iΩi,hdzc,i)

−1d′zc,iΩi,h is defined as in Section 3 in the main

text, and ρmin,gg̃,h is the minimal eigenvalues of 1
N

∑
i 1{g0i = g, gi = g̃}

(
d′zx,iMzc,i,hdzx,i

)
.

Next I show that ρmin,gg̃,h > ρ for some ρ, by showing that d′zx,iMzc,i,hdzx,i is positive

definite. Notice that by Cholesky decomposition Ωi,h = Li,hL
′
i,h, we can write it as

d′zx,iMzc,i,hdzx,i = d′zx,i
[
Ωi,h − Ωi,hdzc,i(d

′
zc,iΩi,hdzc,i)

−1d′zc,iΩi,h

]
dzx,i

= d′zx,iLi,h

[
I − L′

i,hdzc,i(d
′
zc,iΩi,hdzc,i)

−1d′zc,iLi,h

]
L′
i,hdzx,i

=
(
L′
i,hdzx,i

)′
M̃zc,i,h

(
L′
i,hdzx,i

)
=

(
M̃zc,i,hL

′
i,hdzx,i

)′ (
M̃zc,i,hL

′
i,hdzx,i

)
(130)

where the last equality comes from the fact that M̃zc,i,h is idempotent. Specifically, we have

M̃ ′
zc,i,hM̃zc,i,h

=
[
I − L′

i,hdzc,i(d
′
zc,iΩi,hdzc,i)

−1d′zc,iLi,h

]′ [
I − L′

i,hdzc,i(d
′
zc,iΩi,hdzc,i)

−1d′zc,iLi,h

]
= I − L′

i,hdzc,i(d
′
zc,iΩi,hdzc,i)

−1d′zc,iLi,h − L′
i,hdzc,i(d

′
zc,iΩi,hdzc,i)

−1d′zc,iLi,h

+L′
i,hdzc,i(d

′
zc,iΩi,hdzc,i)

−1d′zc,iLi,hL
′
i,hdzc,i(d

′
zc,iΩi,hdzc,i)

−1d′zc,iLi,h

= I − L′
i,hdzc,i(d

′
zc,iΩi,hdzc,i)

−1d′zc,iLi,h

.

Therefore, to show positive definiteness is to show that

M̃zc,i,hL
′
i,hdzx,i =

[
I − L′

i,hdzc,i(d
′
zc,iΩi,hdzc,i)

−1d′zc,iLi,h

]
L′
i,hdzx,i

= L′
i,hdzx,i − L′

i,hdzc,i(d
′
zc,iΩi,hdzc,i)

−1d′zc,iΩi,hdzx,i

(131)

is of full column rank.

We prove this by contradiction. Assume that (131) is does not have full column rank,

then there exists a vector α ̸= 0 such that

L′
i,hdzx,iα = L′

i,hdzc,i(d
′
zc,iΩi,hdzc,i)

−1d′zc,iΩi,hdzx,iα (132)

Observe that by Assumptions 1.D and 1.F, d′zc,iΩi,hdzc,i has full rank and invertible, and
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d′zc,iΩi,hdzx,i is of full column rank. Then (d′zc,iΩi,hdzc,i)
−1d′zc,iΩi,hdzx,iα ̸= 0. As a result,

there exists some τ ̸= 0 such that

L′
i,hdzx,iα = L′

i,hdzc,iτ . (133)

It follows that dzx,i and dzc,i are linearly dependent, violating our rank condition 1.D. There-

fore, (131) is of full column rank and d′zx,iMzc,i,hdzx,i is positive definite.

Notice that the above holds for any i, and thus under any partition over i = 1, . . . , N we

have ρmin,gg̃,h ⩾ ρ > 0. Then we have

QNT (β,ϕ, γ)−QNT (β
0,ϕ0, γ0)

⩾
∑
g

∑
g̃

min
h

ρmin,gg̃,h

(∑
h

∥β0
g,h − βg̃,h∥2

)

⩾
∑
g

[∑
g̃

min
h

ρmin,gg̃,h

(
min

g̃∈{1,...,G0}
∥β0

g − βg̃∥2
)]

⩾
∑
g

[
max

g̃∈{1,...,G0}
min
h

ρmin,gg̃,h

] [
min

g̃∈{1,...,G0}
∥β0

g − βg̃∥2
]

⩾
∑
g

[
min
γ∈G

max
g̃∈{1,...,G0}

min
h

ρmin,gg̃,h

] [
min

g̃∈{1,...,G0}
∥β0

g − βg̃∥2
]

⩾ max
g∈{1,...,G0}

[
min
γ∈G

max
g̃∈{1,...,G0}

min
h

ρmin,gg̃,h

] [
min

g̃∈{1,...,G0}
∥β0

g − βg̃∥2
]

. (134)

There are five inequalities in (134). The first, the second and the fourth are obtained by

construction, i.e.,

∑
h ρmin,gg̃,h∥β0

g,h − βg̃,h∥2 ⩾
∑

h (minh ρmin,gg̃,h) ∥β0
g,h − βg̃,h∥2

∥β0
g − βg̃∥2 ⩾ ming̃∈{1,...,G0}∥β0

g − βg̃∥2

maxg̃∈{1,...,G0} minh ρmin,gg̃,h ⩾ minγ∈G maxg̃∈{1,...,G0} minh ρmin,gg̃,h

(135)

The third and the last inequalities follow the same logic: since each single elements in

the summation is positive, the summation is larger than any single element, including the

maximal one, i.e.,
∑

i ai ⩾ maxi ai as long as ai ⩾ 0. Equation (134) implies that the
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auxiliary function Q̃(β,ϕ, γ) is uniquely minimized at the true parameter values, since the

RHS is bounded away from zero.

The next step is to bound the LHS using Lemma 2. Specifically, we have

QNT (β̂, ϕ̂, γ̂) = Q̂NT (β̂, ϕ̂, γ̂) + op(1)

≤ Q̂NT (β
0,ϕ0, γ0) + op(1) = QNT (β

0,ϕ0, γ0) + op(1)
(136)

where Q̂ is by definition minimized at (β̂, ϕ̂, γ̂). Rearrange terms,

op(1) ⩾ QNT (β̂, ϕ̂, γ̂)−QNT (β
0,ϕ0, γ0) . (137)

Combining (134) and (137):

op(1) ⩾QNT (β̂, ϕ̂, γ̂)−QNT (β
0,ϕ0, γ0)

⩾ max
g∈{1,...,G0}

[
min
γ∈G

max
g̃∈{1,...,G0}

min
h

ρmin,gg̃,h

] [
min

g̃∈{1,...,G0}
∥β0

g − βg̃∥2
]
⩾ 0. (138)

Written compactly, we have

op(1) ⩾ max
g∈{1,...,G0}

[
min
γ∈G

max
g̃∈{1,...,G0}

min
h

ρmin,gg̃,h

] [
min

g̃∈{1,...,G0}
∥β0

g − β̂g̃∥2
]
⩾ 0

Since minγ∈G maxg̃∈{1,...,G0} minh ρmin,gg̃,h is strictly positive and finite, the above inequality

implies

op(1) = max
g∈{1,...,G0}

[
min

g̃∈{1,...,G0}
∥β0

g − β̂g̃∥2
]
. (139)

which proves half of Lemma 3.

Finally, we prove the remaining half of the lemma. First define for any given grouping g

the partition that minimizes the distance of IRs as

σ(g) = argmin
g̃∈{1,...,G0}

∥β0
g − β̂g̃∥2. (140)
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We then want to show that the mapping σ(g) : {1, . . . , G0} → {1, . . . , G0} is one-to-one with

probability approaching 1 so that σ(g)−1 is well-defined. Notice that

β0
g − β0

g̃ = (β0
g − β̂σ(g)) + (β̂σ(g) − β̂σ(g̃)) + (β̂σ(g̃) − β0

g̃ ). (141)

By triangle inequality, we have

(
∥β0

g − β0
g̃∥2
) 1

2 ≤
(
∥β0

g − β̂σ(g)∥2
) 1

2︸ ︷︷ ︸
op(1)

+
(
∥β̂σ(g) − β̂σ(g̃)∥2

) 1
2
+
(
∥β̂σ(g̃) − β0

g̃∥2
) 1

2︸ ︷︷ ︸
op(1)

(142)

where the first and the third term on the RHS are op(1) by (139) and (140). Moreover, the

LHS is strictly positive as long as g ̸= g̃ by Assumption 2.B. Therefore, the above inequality

states that for any g ̸= l, we have

∥β̂σ(g) − β̂σ(l)∥2> 0 .

That is, with probability approaching to 1, σ(g) ̸= σ(g̃) for all g ̸= g̃. Hence, the mapping

σ(g) is one-to-one with probability approaching to 1.

Now we are ready to look at the second part of the Hausdorff distance between β0 and

β̂. We have for all g̃ ∈ {1, . . . , G0},

min
g∈{1,...,G0}

∥β0
g − β̂g̃∥2 ≤ ∥β0

σ−1(g̃) − β̂g̃∥2︸ ︷︷ ︸
by construction

= min
l∈{1,...,G0}

∥β0
σ−1(g̃) − β̂l∥2︸ ︷︷ ︸

by definition of σ

= op(1)︸ ︷︷ ︸
by (139)

. (143)

The above inequality holds for all possible partition g̃, and thus

max
g̃∈{1,...,G0}

[
min

g∈{1,...,G0}
∥β0

g − β̂g̃∥2
]
= op(1) (144)

Given (139) and (144), we have dH(β̂,β
0)

p→ 0 by definition. ■
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S5.4 Lemma 4

Proof. By definition, we can write ϕ̂i,h(βgi,h) as

ϕ̂i,h(βgi,h) = ϕ0
i,h +

(
d̄′zc,iΩ̂i,hd̄zc,i

)−1

d̄′zc,iΩ̂i,hd̄zx,i

[
β0
g0i ,h

− βgi

]
+
(
d̄′zc,iΩ̂i,hd̄zc,i

)−1

d̄′zc,iΩ̂i,hd̄zϵ,i,h

(145)

Rearranging terms gives

∥ϕ̂i,h(βgi,h)− ϕ0
i,h∥ ≤

∥∥∥∥(d̄′zc,iΩ̂i,hd̄zc,i

)−1

d̄′zc,iΩ̂i,hd̄zx,i

[
β0
g0i ,h

− βgi

] ∥∥∥∥
+

∥∥∥∥(d̄′zc,iΩ̂i,hd̄zc,i

)−1

d̄′zc,iΩ̂i,hd̄zϵ,i,h

∥∥∥∥
≤

∥∥∥∥(d̄′zc,iΩ̂i,hd̄zc,i

)−1
∥∥∥∥× ∥∥∥∥d̄′zc,iΩ̂i,hd̄zx,i

∥∥∥∥× ∥∥∥∥β0
g0i ,h

− βgi

∥∥∥∥
+

∥∥∥∥(d̄′zc,iΩ̂i,hd̄zc,i

)−1
∥∥∥∥× ∥∥∥∥d̄′zc,iΩ̂i,hd̄zϵ,i,h

∥∥∥∥
(146)

Consider for example the first term, we want to show that

∥∥∥∥d̄′zc,iΩ̂i,hd̄zc,i − dzc,iΩi,hdzc,i

∥∥∥∥ ≤ op(1) (147)

By add and subtract, we have

∥∥∥∥d̄′zc,iΩ̂i,hd̄zc,i − dzc,iΩi,hdzc,i

∥∥∥∥
=

∥∥∥∥d̄′zc,i(Ω̂i,h − Ωi,h)d̄zc,i + d̄′zc,iΩi,h(d̄zc,i − dzc,i) + (d̄zc,i − dzc,i)
′Ωi,hdzc,i

∥∥∥∥
≤
∥∥∥∥d̄′zc,i(Ω̂i,h − Ωi,h)d̄zc,i

∥∥∥∥+ ∥∥∥∥d̄′zc,iΩi,h(d̄zc,i − dzc,i)

∥∥∥∥+ ∥∥∥∥(d̄zc,i − dzc,i)
′Ωi,hdzc,i

∥∥∥∥
≤
∥∥∥∥dzc,i∥∥∥∥2∥∥∥∥Ω̂i,h − Ωi,h

∥∥∥∥+ ∥∥∥∥d̄′zc,iΩi,h

∥∥∥∥∥∥∥∥d̄zc,i − dzc,i

∥∥∥∥+ ∥∥∥∥d̄zc,i − dzc,i

∥∥∥∥∥∥∥∥Ωi,hdzc,i

∥∥∥∥
(148)

Taking the supremum over i on both sides, by Lemma 1 and the assumption on the weighting

matrix 1.F, we have

sup
i

∥∥∥∥d̄′zc,iΩ̂i,hd̄zc,i − dzc,iΩi,hdzc,i

∥∥∥∥ = op(1) . (149)
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Therefore, we have supi

∥∥∥∥d̄′zc,iΩ̂i,hd̄zc,i

∥∥∥∥ = Op(1). Results for other terms similarly follows.

Taken together, we have

sup
i

∥ϕ̂i,h(βgi,h)− ϕ0
i,h∥ ≤ Op(1) sup

i

∥∥∥∥β0
g0i ,h

− βgi

∥∥∥∥+ op(1) = op(1) (150)

where the last inequality comes from the assumption that supi

∥∥∥∥β0
g0i ,h

− βgi

∥∥∥∥ = op(1). ■
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S5.5 Lemma 5

Proof. By construction, we have

ĝi(β) = g =⇒
∑
h

Q̂iTh(βg,h, ϕ̂i,h(βg,h)) ≤
∑
h

Q̂iTh(βg̃,h, ϕ̂i,h(βg̃,h)) (151)

for arbitrary g̃, which implies

1 {ĝi(β) = g} ≤ 1

{∑
h

Q̂iTh(βg,h, ϕ̂i,h(βg,h)) ≤
∑
h

Q̂iTh(βg̃,h, ϕ̂i,h(βg̃,h))

}
. (152)

As a result, we have

1{ĝi(β) ̸= g0i }

=
∑
g

1{g0i ̸= g}1{ĝi(β) = g}

=
∑
g

∑
g̃ ̸=g

1{g0i = g̃}1{ĝi(β) = g}

≤
∑
g

max
g̃ ̸=g

1{g0i = g̃}1 {ĝi(β) = g}

≤
∑
g

max
g̃∈{1,...,G0}

1
{
g0i = g̃, g̃ ̸= g

}
1

{∑
h

Q̂iTh(βg,h, ϕ̂i,h(βg,h)) ≤
∑
h

Q̂iTh(βg̃,h, ϕ̂i,h(βg̃,h))

}

Now let us focus on the last indicator function. The idea is to use Lemma 2 that

sup
i

sup
β∈Θ, ϕ∈Φ

∣∣Q̂iTh(β, ϕ)−QiTh(β, ϕ)
∣∣ = op(NT−δ) (153)

and the fact that the population objective function is uniquely minimized at the true pa-

rameter values. In order to do this, suppose there exists some ∆ > 0 such that

∆−
∑
h

QiTh(βg,h, ϕ̂i,h(βg,h)) +
∑
h

QiTh(βg̃,h, ϕ̂i,h(βg̃,h)) ≤ 0 (154)
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The by probability algebra, we have :

1

{∑
h

Q̂iTh(βg,h, ϕ̂i,h(βg,h)) ≤
∑
h

Q̂iTh(βg̃,h, ϕ̂i,h(βg̃,h))

}

=1

{
0 ≤

∑
h

Q̂iTh(βg̃,h, ϕ̂i,h(βg̃,h))−
∑
h

Q̂iTh(βg,h, ϕ̂i,h(βg,h))

}

≤1

{
∆−

∑
h

QiTh(βg,h, ϕ̂i,h(βg,h)) +
∑
h

QiTh(βg̃,h, ϕ̂i,h(βg̃,h))

≤
∑
h

Q̂iTh(βg̃,h, ϕ̂i,h(βg̃,h))−
∑
h

Q̂iTh(βg,h, ϕ̂i,h(βg,h))

}

=1

{
∆ ≤

(∑
h

Q̂iTh(βg̃,h, ϕ̂i,h(βg̃,h))−
∑
h

QiTh(βg̃,h, ϕ̂i,h(βg̃,h))

)

−

(∑
h

QiTh(βg,h, ϕ̂i,h(βg,h))−
∑
h

Q̂iTh(βg,h, ϕ̂i,h(βg,h))

)}

≤1

{
∆ ≤

∑
h

∣∣Q̂iTh(βg̃,h, ϕ̂i,h(βg̃,h))−QiTh(βg̃,h, ϕ̂i,h(βg̃,h))
∣∣

+
∑
h

∣∣QiTh(βg,h, ϕ̂i,h(βg,h))− Q̂iTh(βg,h, ϕ̂i,h(βg,h))
∣∣}

≤1

{
∆ ≤ 2

∑
h

sup
β∈Θ,ϕ∈Φ

∣∣Q̂iTh(β, ϕ)−QiTh(β, ϕ)
∣∣}

Next we show that ∆ does exists. Rewrite (154), we would like to find ∆ > 0 such that

∑
h

QiTh(βg,h, ϕ̂i,h(βg,h))−
∑
h

QiTh(βg̃,h, ϕ̂i,h(βg̃,h)) ≥ ∆ . (155)

Add and subtract
∑

h QiTh(β
0
g̃,h, ϕ

0
i,h) to the LHS, the condition becomes

(∑
h

QiTh(βg,h, ϕ̂i,h(βg,h))−
∑
h

QiTh(β
0
g̃,h, ϕ

0
i,h)

)

+

(∑
h

QiTh(β
0
g̃,h, ϕ

0
i,h)−

∑
h

QiTh(βg̃,h, ϕ̂i,h(βg̃,h))

)
≥ ∆ .

(156)

Therefore, the goal is to derive lower bounds for the LHS terms. Suppose β ∈ Nη. Since
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g0i = g̃ and g ̸= g̃, we have

∑
h

∥∥β0
g̃,h − βg,h

∥∥
=

∑
h

∥∥β0
g̃,h − β0

g,h + β0
g,h − βg,h

∥∥
≥

∑
h

∥∥β0
g̃,h − β0

g,h

∥∥−∑h

∥∥β0
g,h − βg,h

∥∥
≥

∑
h

∥∥β0
g̃,h − β0

g,h

∥∥− η ≥ cβ − η

(157)

where cβ ≜ minj ̸=k

∑
h ∥β0

j,h−β0
k,h∥ > 0 by Assumption 2.B. For sufficiently small η, we have∑

h ∥β0
g̃,h − βg,h∥ ≥ cβ − η > 0.

To apply the above result, notice that for individual level objective function QiTh(β, ϕ),

we have

QiTh(β, ϕ) = E[zi,t(yi,t+h − x′
i,tβ − c′i,tϕ)]

′Ωi,hE[zi,t(yi,t+h − x′
i,tβ − c′i,tϕ)]

= (θ0i,h − θ)′E[zi,tw′
i,t]

′Ωi,hE[zi,tw′
i,t](θ

0
i,h − θ)

≥ ρmin,i,h∥θ0i,h − θ∥2 ≥ ρmin,i,h∥β0
g0i ,h

− β∥2

(158)

for generic β ∈ Θ, ϕ ∈ Φ. Therefore, we have

∑
h

QiTh

(
βg,h, ϕ̂i,h(βg,h)

)
−
∑
h

QiTh

(
β0
g̃,h, ϕ

0
i,h

)
=
∑
h

QiTh

(
βg,h, ϕ̂i,h(βg,h)

)
− 0

≥
∑
h

ρmin,i,h

∥∥β0
g̃,h − βg,h

∥∥ ≥
(
min
h

ρmin,i,h

)∑
h

∥∥β0
g̃,h − βg,h

∥∥
≥
(
min
h

ρmin,i,h

)
(cβ − η) .

(159)
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Similarly, for generic β, β̃ ∈ Θ, ϕ, ϕ̃ ∈ Φ:

QiTh(β, ϕ)−QiTh(β̃, ϕ̃)

=(θ0i,h − θ)′E[zi,tw′
i,t]

′Ωi,hE[zi,tw′
i,t](θ

0
i,h − θ)

− (θ0i,h − θ̃)′E[zi,tw′
i,t]

′Ωi,hE[zi,tw′
i,t](θ

0
i,h − θ̃)

=(2θ0i,h − θ − θ̃)′E[zi,tw′
i,t]

′Ωi,hE[zi,tw′
i,t](θ̃ − θ)

≤
∣∣(2θ0i,h − θ − θ̃)′E[zi,tw′

i,t]
′Ωi,hE[zi,tw′

i,t](θ̃ − θ)
∣∣

≤
∥∥∥2θ0i,h − θ − θ̃

∥∥∥× ∥∥E[zi,tw′
i,t]

′Ωi,hE[zi,tw′
i,t]
∥∥× [∥β − β̃∥2 + ∥ϕ− ϕ̃∥2

]1/2
≤C2

[
∥β − β̃∥+ ∥ϕ− ϕ̃∥

]

(160)

where C2 < ∞ is some finite constant. To see this, observe that by Assumption 1.A the

parameter space is compact and thus bounded; moreover, by Assumption 1.D and 1.F,

E[zi,tw′
i,t]

′Ωi,hE[zi,tw′
i,t] is finite positive definite and thus its norm is bounded; these condi-

tions holds uniformly over i and the parameter space.

Then by (160), we can derive the upper bound:

0 ≤
∑
h

QiTh(βg̃,h, ϕ̂i,h(βg̃,h))−
∑
h

QiTh

(
β0
g̃,h, ϕ

0
i,h

)
≤C2

∑
h

[
∥β0

g̃,h − βg̃,h∥+ ∥ϕ̂i,h(βg̃,h)− ϕ0
i,h∥
]

≤C2

∑
h

sup
i

∥ϕ̂i,h(βg̃,h)− ϕ0
i,h∥+ C2Hη

(161)

where the first inequality comes from the fact that QiTh (β, ϕ) is uniquely minimized at

(β0
g̃,h, ϕ

0
i,h), and the last inequality is obtained by the condition that β ∈ Nη. Therefore, we

have

∑
h

QiTh(β
0
g̃,h, ϕ

0
i,h)−

∑
h

QiTh(βg̃,h, ϕ̂i,h(βg̃,h)) ≥ −C2

∑
h

sup
i

∥ϕ̂i,h(βg̃,h)− ϕ0
i,h∥ − C2Hη .

(162)
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Taken together, we have

(∑
h

QiTh(βg,h, ϕ̂i,h(βg,h))−
∑
h

QiTh(β
0
g̃,h, ϕ

0
i,h)

)

+

(∑
h

QiTh(β
0
g̃,h, ϕ

0
i,h)−

∑
h

QiTh(βg̃,h, ϕ̂i,h(βg̃,h))

)

≥
(
min
h

ρmin,i,h

)
(cβ − η)− C2

∑
h

sup
i

∥ϕ̂i,h(βg̃,h)− ϕ0
i,h∥ − C2Hη

(163)

It remains to show that the RHS is asymptotically bounded away from zero. Notice that

since we are conditioning on g0i = g̃ and β ∈ Nη, we have maxg̃ ∥βg̃,h − β0
g̃,h∥ = op(1), which

satisfies the condition of Lemma 4. Therefore, we have for all h,

sup
i

∥ϕ̂i,h(βg̃,h)− ϕ0
i,h∥ = op(1) . (164)

Denote the event Aη =
{
supi ∥ϕ̂i,h(βg̃,h)− ϕ0

i,h∥ ≤ η
}

for any given η > 0. We know that

P(Aη) = 1. Then conditional on Aη, we have

(∑
h

QiTh(βg,h, ϕ̂i,h(βg,h))−
∑
h

QiTh(β
0
g̃,h, ϕ

0
i,h)

)

+

(∑
h

QiTh(β
0
g̃,h, ϕ

0
i,h)−

∑
h

QiTh(βg̃,h, ϕ̂i,h(βg̃,h))

)

≥
(
min
h

ρmin,i,h

)
cβ − η

(
min
h

ρmin,i,h + 2C2H
)
≜ ∆ > 0

(165)

where we use the fact that 0 < minh ρmin,i,h, C2 < ∞ by Assumptions 1.A, 1.D and 1.F,

H < ∞ by Assumption 1.G. The last inequality holds if we choose a sufficiently small η.
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Having established the expression for ∆ under the event Aη, we have

1

{∑
h

Q̂iTh(βg,h, ϕ̂i,h(βg,h)) ≤
∑
h

Q̂iTh(βg̃,h, ϕ̂i,h(βg̃,h))

}

≤1

{∑
h

Q̂iTh(βg,h, ϕ̂i,h(βg,h)) ≤
∑
h

Q̂iTh(βg̃,h, ϕ̂i,h(βg̃,h))

}
1 {Aη}

+ 1

{∑
h

Q̂iTh(βg,h, ϕ̂i,h(βg,h)) ≤
∑
h

Q̂iTh(βg̃,h, ϕ̂i,h(βg̃,h))

}
1
{
Ac

η

}
≤1

{
∆ ≤ 2

∑
h

sup
β∈Θ,ϕ∈Φ

∣∣Q̂iTh(β, ϕ)−QiTh(β, ϕ)
∣∣}1 {Aη}+ 1

{
Ac

η

}
≤21

{∑
h

sup
β∈Θ,ϕ∈Φ

∣∣Q̂iTh(β, ϕ)−QiTh(β, ϕ)
∣∣ ≥ ∆/2

}
+ 1

{
Ac

η

}

. (166)

Plug this back into the misclassification indicator, we have

P

(
sup
β∈Nη

sup
i

1
{
ĝi(β) ̸= g0i

}
> 0

)

≤P

(
sup
β∈Nη

sup
i

∑
g

max
g̃ ̸=g

1{g0i = g̃}1 {ĝi(β) = g} > 0

)

≤P

(
sup
β∈Nη

sup
i

∑
g

max
g̃ ̸=g

1{g0i = g̃}1

{∑
h

Q̂iTh(βg,h, ϕ̂i,h(βg,h))

≤
∑
h

Q̂iTh(βg̃,h, ϕ̂i,h(βg̃,h))

}
> 0

)

≤G0(G0 − 1)max
g

max
g̃ ̸=g

P

(
sup
β∈Nη

sup
i

21

{∑
h

sup
β∈Θ,ϕ∈Φ

∣∣Q̂iTh(β, ϕ)−QiTh(β, ϕ)
∣∣ ≥ ∆/2

}

+ sup
β∈Nη

sup
i

1
{
Ac

η

}
> 0

)

≤2G0(G0 − 1)max
g

max
g̃ ̸=g

P

(∑
h

sup
i

sup
β∈Θ,ϕ∈Φ

∣∣Q̂iTh(β, ϕ)−QiTh(β, ϕ)
∣∣ ≥ ∆/2

)

+ 2G0(G0 − 1)max
g

max
g̃ ̸=g

P
(
sup
i

∥ϕ̂i,h(βg̃,h)− ϕ0
i,h∥ > η

)
≤2G0(G0 − 1)max

g
max
g̃ ̸=g

[op(NT−δ) + op(1)] = op(1)

(167)

where the third and the fourth inequality comes from the Boole’s inequality, and the last
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inequality follows from Lemma 2, Lemma 4, and the Assumption 2.C that the number of

groups is finite. ■
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S5.6 Lemma 6

Proof. The proofs of each terms follow the same logic, and hence here we show the proof for

the first term only. By simple manipulations, we have

∣∣d̄′zx,iΩ̂i,hd̄zx,i − d′zx,iΩi,hdzx,i
∣∣

=
∣∣d̄′zx,iΩ̂i,hd̄zx,i − d̄′zx,iΩi,hd̄zx,i + d̄′zx,iΩi,hd̄zx,i − d′zx,iΩi,hdzx,i

∣∣
≤
∣∣d̄′zx,i(Ω̂i,h − Ωi,h)d̄zx,i

∣∣+ ∣∣d̄′zx,iΩi,hd̄zx,i − dzx,iΩi,hdzx,i
∣∣

=
∣∣d̄′zx,i(Ω̂i,h − Ωi,h)d̄zx,i − d′zx,i(Ω̂i,h − Ωi,h)dzx,i + d′zx,i(Ω̂i,h − Ωi,h)dzx,i

∣∣
+
∣∣(d̄zx,i − dzx,i)

′Ωi,h(d̄zx,i − dzx,i) + 2d′zx,iΩi,h(d̄zx,i − dzx,i)
∣∣

≤
∣∣(d̄zx,i − dzx,i)

′(Ω̂i,h − Ωi,h)(d̄zx,i − dzx,i) + 2d′zx,i(Ω̂i,h − Ωi,h)(d̄zx,i − dzx,i)
∣∣

+
∣∣d′zx,i(Ω̂i,h − Ωi,h)dzx,i

∣∣
+
∣∣(d̄zx,i − dzx,i)

′Ωi,h(d̄zx,i − dzx,i)
∣∣+ 2

∣∣d′zx,iΩi,h(d̄zx,i − dzx,i)
∣∣

≤∥d̄zx,i − dzx,i∥2
[
∥Ωi,h∥+ ∥Ω̂i,h − Ωi,h∥

]
+ 2∥dzx,i∥∥d̄zx,i − dzx,i∥

[
∥Ωi,h∥+ ∥Ω̂i,h − Ωi,h∥

]
+ ∥dzx,i∥2∥Ω̂i,h − Ωi,h∥

(168)

We have three terms on the RHS. Next we take the supremum on both sides and bound the

three terms separately.

Term 1.

supi ∥d̄zx,i − dzx,i∥2
[
∥Ωi,h∥+ ∥Ω̂i,h − Ωi,h∥

]
≤ supi ∥d̄zx,i − dzx,i∥2

[
supi ∥Ωi,h∥+ supi ∥Ω̂i,h − Ωi,h∥

]
≤ op(NT−δ)

(
Op(1) + op(NT−δ)

) (169)

by Lemma 1 and Assumption 1.F.
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Term 2.

supi ∥dzx,i∥∥d̄zx,i − dzx,i∥
[
∥Ωi,h∥+ ∥Ω̂i,h − Ωi,h∥

]
≤ supi ∥dzx,i∥ supi ∥d̄zx,i − dzx,i∥

[
∥Ωi,h∥+ ∥Ω̂i,h − Ωi,h∥

]
= Op(1)op(1) = op(1)

(170)

where we use the full rank condition 1.D and result from Term 1.

Term 3.
supi ∥dzx,i∥2∥Ω̂i,h − Ωi,h∥

≤ supi ∥dzx,i∥2∥ supi ∥Ω̂i,h − Ωi,h∥ = Op(1)op(NT−δ)
(171)

where we use Assumptions 1.D and 1.F.

Combining the three terms, we

supi

(
d̄′zx,iΩ̂i,hd̄zx,i − d′zx,iΩi,hdzx,i

)
≤ supi

∣∣d̄′zx,iΩ̂i,hd̄zx,i − d′zx,iΩi,hdzx,i
∣∣ = op(1)

(172)

as desired. The proof for the other terms are almost identical. ■
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Tables and figures

Table S1: Infeasible GLP Coverage Rates (%)

G0 = 2 G0 = 3

Design N T h=0 h=1 h=2 h=3 h=4 h=5 h=6 h=0 h=1 h=2 h=3 h=4 h=5 h=6

1

100 100 94.3 91.9 91.0 91.1 88.5 89.6 90.3 92.8 91.8 89.4 89.0 87.7 87.9 86.9
100 200 94.3 93.8 92.9 92.1 91.9 92.1 91.2 93.6 93.8 92.3 91.9 90.5 90.6 90.0
100 300 94.6 92.6 93.0 93.0 92.7 93.0 93.0 93.8 93.1 92.0 92.3 92.0 92.0 91.3
200 100 95.3 91.3 88.2 87.9 86.6 85.3 84.5 94.0 91.4 89.5 87.4 85.1 84.1 82.8
200 200 95.1 92.8 92.5 91.8 91.3 91.0 90.6 93.9 92.7 92.8 91.7 91.4 90.7 89.9
200 300 93.9 92.9 93.6 93.8 92.4 92.8 90.6 93.8 93.2 93.2 93.0 91.8 91.1 91.1
300 100 94.6 89.3 85.4 84.1 83.8 82.5 81.0 94.1 90.0 86.8 84.1 81.5 79.0 78.1
300 200 95.8 91.7 89.9 89.0 88.9 89.0 86.6 94.8 92.3 91.3 90.2 89.9 87.4 87.1
300 300 94.6 93.6 92.8 91.7 91.6 90.4 89.6 95.3 93.3 92.6 92.3 91.5 90.5 90.0

2

100 100 93.6 92.9 91.4 90.7 91.3 91.6 91.6 94.1 92.7 91.6 91.2 91.0 92.0 90.5
100 200 93.9 93.8 92.8 92.9 92.3 92.2 93.1 93.2 93.2 92.1 92.0 92.4 91.9 91.9
100 300 94.2 94.0 93.3 93.1 93.1 93.1 93.8 93.9 93.1 93.1 93.5 92.6 92.4 92.6
200 100 95.0 91.5 89.7 88.0 86.9 85.3 86.1 94.5 92.7 90.5 89.6 89.1 88.7 88.8
200 200 94.8 93.8 92.4 91.6 91.1 90.4 91.5 94.9 93.9 92.9 91.7 91.9 91.9 91.7
200 300 94.9 94.7 94.0 93.3 93.2 93.1 92.7 94.1 94.2 93.5 93.1 92.5 92.4 91.6
300 100 95.6 91.5 87.1 83.9 83.1 84.2 83.7 94.3 91.4 89.3 87.2 86.5 86.6 86.8
300 200 94.9 92.7 92.2 90.9 91.0 89.6 89.2 93.9 92.7 91.3 90.9 90.8 89.3 89.8
300 300 95.5 94.0 92.7 91.7 91.3 90.8 91.3 94.3 94.4 92.8 92.1 91.7 92.2 92.1

Note: Standard errors are clustered at individual level (Cameron and Miller, 2015).
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Tables and figures

Table S2: Infeasible GLP Jackknife Coverage Rates (%)

G0 = 2 G0 = 3

Design N T h=0 h=1 h=2 h=3 h=4 h=5 h=6 h=0 h=1 h=2 h=3 h=4 h=5 h=6

1

100 100 94.0 93.3 94.8 93.3 92.8 92.5 92.3 93.7 93.4 93.2 93.0 91.4 91.6 91.2
100 200 93.3 94.8 93.6 93.9 93.9 94.1 95.1 93.9 94.9 93.8 93.6 94.4 93.9 94.1
100 300 94.6 93.9 94.4 94.3 94.3 94.5 94.8 94.2 94.2 94.2 94.1 94.3 94.2 94.4
200 100 93.5 94.0 93.3 93.4 92.7 92.6 92.5 93.5 93.9 93.1 92.8 91.6 91.4 91.1
200 200 94.2 94.9 94.3 94.4 94.3 94.0 93.4 94.7 94.3 94.3 94.2 94.0 93.2 92.8
200 300 95.2 94.9 93.8 94.7 94.4 94.7 95.0 94.9 94.7 94.7 93.9 94.2 94.4 93.6
300 100 93.1 93.4 93.3 92.5 91.5 92.2 92.3 93.3 93.1 92.2 92.6 91.5 91.2 91.1
300 200 94.1 94.7 94.3 93.6 94.0 93.6 93.3 94.2 93.9 93.8 93.7 93.7 92.9 93.3
300 300 94.6 93.9 93.9 92.9 93.5 93.7 94.2 94.5 94.4 93.9 93.4 93.4 93.1 93.5

2

100 100 93.7 93.4 94.0 92.8 92.8 92.2 92.3 93.6 93.5 93.9 92.9 92.4 92.6 92.3
100 200 93.3 94.7 94.1 94.1 94.5 94.7 94.9 93.9 94.9 94.0 94.2 94.5 94.1 94.3
100 300 94.5 94.2 94.1 94.3 93.9 94.3 95.2 94.2 94.7 94.3 94.6 93.8 94.9 94.9
200 100 93.4 93.9 93.8 93.3 92.9 92.2 92.5 93.7 93.8 93.2 92.6 92.3 92.3 92.0
200 200 94.4 94.4 94.2 94.4 93.7 92.8 93.5 94.7 94.6 94.2 94.9 93.8 92.8 93.0
200 300 95.4 94.9 94.0 94.7 94.9 95.0 94.6 95.0 94.2 94.6 94.5 94.8 94.6 94.3
300 100 93.3 93.3 92.7 92.5 91.1 91.5 92.3 93.7 93.4 92.2 93.1 92.0 92.0 92.8
300 200 94.2 95.0 93.7 93.7 94.1 93.8 93.8 94.5 93.8 94.0 93.7 94.4 93.8 94.0
300 300 94.8 93.7 93.5 92.5 93.5 94.5 94.1 94.6 94.5 93.7 93.4 93.7 93.8 94.3

Note: Standard errors are clustered at individual level (Cameron and Miller, 2015).
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Tables and figures

Table S3: GLP Jackknife Coverage Rates (%)

G0 = 2 G0 = 3

Design N T h=0 h=1 h=2 h=3 h=4 h=5 h=6 h=0 h=1 h=2 h=3 h=4 h=5 h=6

1

100 100 92.2 80.3 77.7 80.0 82.8 86.7 89.7 91.3 72.3 69.4 71.5 74.9 78.3 81.1
100 200 93.3 87.6 89.5 89.7 90.9 92.6 93.5 93.7 84.6 82.7 84.3 85.3 87.0 89.6
100 300 94.1 92.2 93.8 93.2 94.0 93.6 94.2 94.4 90.7 89.5 89.5 90.5 91.2 92.1
200 100 90.5 66.4 62.8 64.8 74.0 79.6 87.2 90.5 53.3 49.1 53.3 62.5 66.7 72.3
200 200 93.5 81.5 85.2 87.3 89.0 90.6 92.2 93.3 74.3 70.6 73.7 77.0 80.2 82.9
200 300 95.7 88.0 90.9 92.9 93.1 94.2 94.5 94.4 84.9 83.7 84.0 86.0 88.0 89.4
300 100 88.5 56.6 53.0 53.9 64.1 78.4 86.8 88.5 42.0 37.1 42.8 51.7 60.6 65.7
300 200 92.7 76.4 79.1 81.8 85.4 87.7 92.0 93.1 64.7 61.1 63.3 67.8 73.6 77.2
300 300 94.2 84.5 88.1 89.9 91.2 93.0 93.4 94.7 80.3 76.5 78.8 80.4 83.3 86.4

2

100 100 93.6 93.5 94.0 92.7 92.8 92.0 92.3 94.2 93.5 93.9 93.0 92.4 92.6 92.2
100 200 93.3 94.7 94.1 94.1 94.5 94.7 94.9 93.9 94.9 94.0 94.2 94.5 94.1 94.3
100 300 94.5 94.2 94.1 94.3 93.9 94.3 95.2 94.2 94.7 94.3 94.6 93.8 94.9 94.9
200 100 93.2 93.9 94.0 93.2 92.8 92.4 92.6 93.5 93.8 93.3 92.8 92.2 92.5 92.2
200 200 94.5 94.4 94.2 94.4 93.7 92.8 93.5 94.8 94.5 94.2 94.9 93.8 92.8 93.0
200 300 95.4 94.9 94.0 94.7 94.9 95.0 94.6 95.0 94.2 94.6 94.5 94.8 94.6 94.3
300 100 93.0 93.1 92.8 92.4 91.3 91.6 92.3 93.4 93.4 92.3 92.9 92.0 92.1 92.6
300 200 94.1 95.0 93.7 93.6 94.1 93.8 93.8 94.5 93.8 94.1 93.7 94.4 93.8 94.0
300 300 94.8 93.7 93.5 92.5 93.5 94.5 94.1 94.6 94.5 93.7 93.4 93.7 93.8 94.3

Note: Standard errors are clustered at individual level (Cameron and Miller, 2015).
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Table S4: GLP Performance (T = 50)

BR (%) RMSE (×100)
Design G0 N AC (%) GLP IGLP GLP PAN IND IGLP

1

2
100 74.0 17.8 17.7 43.1 35.4 107.3 16.5
200 74.3 12.7 12.6 42.0 34.8 123.5 14.2
300 74.2 10.4 10.4 41.9 34.7 115.1 13.2

3
100 64.5 23.7 22.1 78.1 83.9 138.1 27.2
200 64.3 16.9 15.8 77.2 83.4 179.0 23.6
300 64.4 13.9 13.0 76.6 83.2 220.7 22.1

2

2
100 97.0 18.2 17.8 12.5 23.2 62.6 9.7
200 97.0 12.9 12.7 11.2 22.9 69.5 8.0
300 97.1 10.5 10.4 10.7 22.8 65.7 7.4

3
100 96.2 22.2 21.5 17.4 37.8 81.6 14.7
200 96.2 15.8 15.4 15.0 37.4 135.5 11.9
300 96.1 12.9 12.7 14.1 37.3 97.8 10.8

Table S5: GLP Performance (T = 200)

BR (%) RMSE (×100)
Design G0 N AC (%) GLP IGLP GLP PAN IND IGLP

1

2
300 92.8 8.7 8.6 18.2 32.8 43.4 4.2
400 92.6 7.5 7.5 18.3 32.7 43.4 3.8
500 92.7 6.7 6.7 18.2 32.7 43.3 3.6

3
300 90.2 10.9 10.6 33.6 81.0 52.6 6.4
400 90.2 9.4 9.2 33.4 81.0 52.6 5.6
500 90.2 8.4 8.2 33.5 81.0 52.6 5.3

2

2
300 100.0 8.7 8.6 2.5 21.9 26.2 2.4
400 100.0 7.5 7.5 2.3 21.9 26.2 2.3
500 100.0 6.7 6.7 2.2 21.9 26.2 2.1

3
300 100.0 10.6 10.5 3.9 36.4 34.5 3.7
400 100.0 9.2 9.1 3.5 36.3 34.4 3.4
500 100.0 8.2 8.2 3.3 36.3 34.4 3.1
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Table S6: GLP Performance (T = 300)

BR (%) RMSE (×100)
Design G0 N AC (%) GLP IGLP GLP PAN IND IGLP

1

2
500 96.3 6.6 6.6 12.8 32.7 35.0 2.7
1000 96.3 4.7 4.7 12.7 32.6 35.0 2.2
1500 96.3 3.8 3.8 12.7 32.6 35.0 2.0

3
500 95.1 8.2 8.1 23.9 80.9 42.3 3.9
1000 95.1 5.8 5.7 23.9 80.9 42.3 3.3
1500 95.1 4.7 4.7 23.8 80.9 42.3 3.0

2

2
500 100.0 6.6 6.6 1.6 21.9 21.1 1.6
1000 100.0 4.7 4.7 1.3 21.9 21.1 1.3
1500 100.0 3.8 3.8 1.2 21.8 21.1 1.2

3
500 100.0 8.1 8.0 2.4 36.3 27.8 2.4
1000 100.0 5.7 5.7 2.0 36.3 27.8 1.9
1500 100.0 4.7 4.6 1.8 36.3 27.8 1.7
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Table S7: GLP Coverage Rates (%, T = 50)

GLP IGLP
Design G N h=0 h=1 h=2 h=3 h=4 h=5 h=6 h=0 h=1 h=2 h=3 h=4 h=5 h=6

1

2
100 89.6 81.6 71.2 73.0 80.3 83.8 86.6 94.2 90.3 86.1 84.2 84.9 85.5 84.7
200 85.9 66.1 44.9 53.8 65.1 75.1 78.6 93.8 86.0 79.0 76.9 75.9 75.0 75.8
300 82.3 52.6 28.6 40.6 56.9 66.7 69.5 95.1 80.6 73.1 69.3 66.7 65.8 65.2

3
100 90.9 81.9 83.1 84.8 86.9 88.3 90.4 93.8 89.6 86.1 83.4 81.5 78.9 78.3
200 88.9 65.9 69.5 74.7 78.4 80.7 83.8 94.6 87.2 82.3 76.7 72.8 69.8 67.4
300 85.7 54.3 52.7 62.3 67.7 72.1 79.8 94.1 83.0 75.5 68.5 63.6 60.3 58.0

2

2
100 89.7 91.5 87.5 86.5 85.1 86.6 86.0 95.5 91.2 88.3 86.6 86.2 86.1 84.6
200 83.6 88.4 84.9 78.5 76.2 77.6 76.8 95.0 88.7 85.3 79.8 77.7 77.8 76.8
300 79.7 85.2 76.1 71.2 67.5 71.0 72.5 94.8 85.8 78.3 72.7 69.2 69.6 71.4

3
100 90.0 91.9 90.4 88.9 87.3 88.1 87.8 93.8 91.5 89.0 88.3 86.9 87.4 86.7
200 86.8 90.1 85.4 82.2 82.0 82.7 83.0 94.7 90.2 86.7 83.6 82.7 81.6 82.3
300 82.0 88.3 82.2 77.7 75.9 77.5 76.4 94.5 88.1 83.5 79.5 76.6 77.4 75.6

Note: This table reports the coverage probability of the large T inference as in Theorem 2.
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Table S8: GLP Coverage Rates (%, T = 200)

GLP IGLP
Design G N h=0 h=1 h=2 h=3 h=4 h=5 h=6 h=0 h=1 h=2 h=3 h=4 h=5 h=6

1

2
300 92.7 89.1 92.2 89.8 88.7 89.2 89.0 95.1 92.8 91.0 89.2 88.9 88.3 88.0
400 89.7 87.1 91.0 88.3 86.0 86.7 87.2 94.9 91.5 89.7 87.4 87.2 86.3 86.4
500 89.3 86.6 88.8 85.5 85.3 86.6 85.1 95.1 91.6 88.1 86.0 84.1 83.8 83.4

3
300 92.3 80.0 80.3 85.4 89.2 92.8 94.4 94.8 93.5 90.4 89.0 88.5 88.0 86.0
400 92.1 77.4 76.0 81.8 87.0 90.8 92.8 95.0 92.3 90.8 89.0 87.6 86.3 86.0
500 91.4 71.6 73.5 78.1 85.5 89.0 92.1 94.8 91.4 89.6 86.9 85.6 85.1 82.2

2

2
300 93.6 92.6 89.5 89.5 90.0 88.9 90.4 94.6 93.2 90.8 90.0 90.2 89.9 89.6
400 92.6 91.7 90.4 86.9 86.9 88.1 87.1 94.3 93.2 90.5 88.1 87.9 88.1 87.6
500 91.3 90.0 88.2 86.8 85.9 86.4 86.0 94.3 91.7 89.6 87.8 87.4 87.1 85.8

3
300 93.5 92.5 91.8 90.3 90.6 90.8 91.4 95.1 93.3 92.5 90.6 91.0 90.7 90.7
400 93.0 92.3 90.0 88.5 89.6 88.8 88.3 94.6 92.8 90.7 89.6 89.8 89.3 88.1
500 93.2 91.6 88.9 87.1 87.5 88.9 87.7 94.4 92.4 90.4 88.5 87.5 89.1 88.2

Note: This table reports the coverage probability of the large T inference as in Theorem 2.
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Table S9: GLP Coverage Rates (%, T = 300)

GLP IGLP
Design G N h=0 h=1 h=2 h=3 h=4 h=5 h=6 h=0 h=1 h=2 h=3 h=4 h=5 h=6

1

2
500 91.9 91.0 95.5 91.8 90.6 90.5 89.5 94.0 91.2 89.5 88.7 87.4 89.1 87.6
1000 89.1 87.2 93.7 89.9 87.1 84.2 82.5 95.2 90.4 85.9 82.9 80.8 80.2 78.6
1500 87.0 80.7 92.4 86.4 81.1 79.2 77.4 95.4 86.3 81.4 78.1 75.7 74.3 72.9

3
500 93.2 84.4 85.1 88.3 91.0 92.6 93.6 94.1 93.7 91.9 89.7 88.8 87.8 86.5
1000 91.6 75.3 76.3 80.2 85.8 88.7 90.4 95.4 90.9 88.2 84.4 82.3 80.3 78.4
1500 89.5 68.2 70.1 74.1 80.9 87.1 88.8 95.1 89.7 84.5 81.1 76.6 74.0 71.3

2

2
500 92.1 92.5 89.4 88.0 88.2 88.5 88.5 94.7 93.8 90.3 89.5 88.6 88.8 88.6
1000 91.7 88.8 84.8 83.3 82.7 81.4 82.6 94.9 90.7 87.6 85.4 84.4 82.0 82.8
1500 89.7 85.4 79.5 76.9 77.2 75.1 77.3 94.7 88.3 83.3 79.8 79.5 76.5 77.7

3
500 93.2 92.7 90.3 90.2 90.9 90.4 90.5 94.3 93.4 91.6 90.9 90.6 90.3 90.6
1000 92.5 90.9 87.7 85.9 85.3 85.6 84.7 94.2 92.3 89.2 87.7 86.3 86.2 85.0
1500 91.6 86.5 84.9 82.1 81.2 81.1 82.0 94.7 89.7 87.8 84.4 82.2 82.0 82.7

Note: This table reports the coverage probability of the large T inference as in Theorem 2.
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Table S10: GLP with Unknown Group Number (RMSE ×100)

G0 = 2 G0 = 3

N 100 200 100 200 400 100 200 100 200 400
Design T 50 50 400 400 400 50 50 400 400 400

1

PAN 35.5 34.9 32.7 32.7 32.6 83.9 83.4 81.0 81.0 80.9
Ĝ = 2 46.3 44.3 10.5 10.4 9.8 79.1 78.0 29.1 29.2 29.0
Ĝ = 3 53.6 51.8 15.4 15.1 14.8 82.7 81.4 19.3 19.3 19.1
Ĝ = 4 57.3 55.0 17.2 16.6 16.2 85.8 84.3 24.0 23.9 23.5
Ĝ = 5 60.5 57.6 18.3 17.7 17.2 88.5 86.3 25.4 25.3 24.9
Ĝ = 6 62.9 59.9 19.2 18.5 18.0 90.4 87.9 26.2 26.0 25.7
Ĝ = 7 65.0 61.4 19.9 19.1 18.5 91.9 89.3 26.9 26.5 26.1
Ĝ = 8 66.6 63.0 20.5 19.6 19.0 93.5 90.2 27.3 26.9 26.5
IND 101.3 103.1 30.1 30.2 30.1 126.0 126.6 36.3 36.4 36.4
IC 1.0 1.0 2.0 2.0 2.0 2.0 2.0 3.1 3.0 3.1

2

PAN 23.2 22.9 21.9 21.9 21.9 37.7 37.4 36.3 36.3 36.3
Ĝ = 2 12.9 11.5 2.7 2.0 1.5 23.8 22.6 17.4 17.1 17.0
Ĝ = 3 24.9 23.2 8.2 7.8 7.6 18.4 16.1 4.1 3.1 2.2
Ĝ = 4 28.6 26.7 9.5 9.0 8.8 32.6 30.0 10.6 9.9 9.5
Ĝ = 5 31.3 29.2 10.4 9.9 9.6 37.5 34.6 12.4 11.6 11.1
Ĝ = 6 33.2 30.9 11.0 10.5 10.2 41.1 37.7 13.4 12.6 12.1
Ĝ = 7 34.9 32.5 11.5 10.9 10.6 43.5 39.9 14.2 13.4 12.8
Ĝ = 8 36.2 33.8 12.0 11.3 11.0 45.7 41.7 14.9 13.9 13.4
IND 61.9 64.8 18.1 18.2 18.2 89.8 81.7 23.9 23.9 23.9
IC 2.0 2.0 2.0 2.0 2.0 2.1 2.1 3.0 3.0 3.0

Note: This table reports the RMSE of the GLP with different supplied group number. Cells chosen by
the information criterion are in bold.
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Table S11: Compare Weighting Matrix: Classification Accuracy (%)

G0 = 2 G0 = 3

Design N T UH H U 2SLS IV UH H U 2SLS IV

1

100 100 83.5 84.1 83.0 83.0 83.1 78.2 78.6 77.1 76.9 77.2
100 200 92.6 92.7 91.8 91.7 91.8 90.0 90.3 88.8 88.6 88.8
100 300 96.3 96.3 95.6 95.6 95.6 95.0 95.1 94.0 93.9 94.0
200 100 83.5 84.0 82.9 82.8 83.0 77.9 78.4 76.8 76.7 77.0
200 200 92.4 92.6 91.7 91.6 91.7 90.1 90.3 89.0 88.8 89.0
200 300 96.3 96.3 95.6 95.6 95.6 94.9 95.0 94.0 93.9 94.0
300 100 83.5 84.0 82.9 82.9 83.0 77.9 78.3 76.9 76.7 77.0
300 200 92.6 92.7 91.8 91.8 91.8 90.1 90.3 88.9 88.7 88.9
300 300 96.3 96.3 95.6 95.6 95.6 94.9 95.1 94.0 93.9 94.0

2

100 100 99.7 99.7 96.6 96.5 96.6 99.6 99.7 90.3 90.1 91.7
100 200 100.0 100.0 99.6 99.5 99.5 100.0 100.0 98.0 98.0 98.1
100 300 100.0 100.0 99.9 99.9 99.9 100.0 100.0 99.4 99.4 99.4
200 100 99.7 99.7 96.7 96.6 96.7 99.6 99.6 90.1 90.0 91.7
200 200 100.0 100.0 99.5 99.5 99.5 100.0 100.0 98.1 98.0 98.1
200 300 100.0 100.0 99.9 99.9 99.9 100.0 100.0 99.4 99.4 99.4
300 100 99.7 99.7 96.6 96.5 96.6 99.6 99.6 89.9 89.8 91.7
300 200 100.0 100.0 99.5 99.5 99.5 100.0 100.0 98.1 98.0 98.1
300 300 100.0 100.0 99.9 99.9 99.9 100.0 100.0 99.5 99.5 99.5

Note: This table reports the classification accuracy of the GLP estimator with different weighting schemes. UH,
H, U, 2SLS, IV indicate unit-and-horizon specific weights, horizon-specific weights, unit-specific weights, two stage
least squares weights and IV weights respectively. Cells with the highest accuracy are in bold.
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Table S12: Compare weighting matrix: RMSE (×100)

Ĝ Design N T UH H U 2SLS IV PAN IND IGLP

2

1

100 100 30.0 29.6 30.4 30.7 30.5 33.5 63.7 10.0
100 200 19.0 18.9 19.9 19.9 19.9 32.9 43.3 6.4
100 300 13.6 13.4 14.5 14.5 14.5 32.8 35.0 5.1
200 100 29.4 29.1 30.0 30.2 30.1 33.2 63.8 7.8
200 200 18.8 18.5 19.6 19.7 19.6 32.8 43.4 4.9
200 300 13.2 13.1 14.2 14.2 14.2 32.7 35.0 3.8
300 100 29.2 28.9 29.8 30.1 29.9 33.1 63.8 7.0
300 200 18.4 18.3 19.3 19.4 19.3 32.7 43.3 4.2
300 300 13.0 12.9 14.0 14.0 13.9 32.7 35.0 3.2

2

100 100 7.1 6.5 10.2 10.2 10.1 22.3 38.6 5.8
100 200 4.2 3.9 5.1 4.9 4.9 22.0 26.2 3.8
100 300 3.2 3.1 3.5 3.3 3.3 21.9 21.1 3.1
200 100 5.9 5.3 9.4 9.3 9.2 22.1 38.5 4.6
200 200 3.3 3.0 4.5 4.3 4.3 21.9 26.2 2.9
200 300 2.4 2.2 2.8 2.6 2.6 21.9 21.1 2.2
300 100 5.5 4.8 9.3 9.2 9.1 22.1 38.6 4.1
300 200 2.9 2.6 4.2 4.0 4.0 21.9 26.1 2.5
300 300 2.1 1.9 2.5 2.3 2.3 21.9 21.1 1.9

3

1

100 100 52.0 52.6 53.2 53.6 53.5 81.6 77.5 15.0
100 200 34.3 34.1 35.9 35.8 35.6 81.2 52.5 9.5
100 300 24.8 24.5 26.6 26.4 26.3 81.0 42.3 7.5
200 100 51.9 52.2 52.9 53.3 53.2 81.5 77.5 12.0
200 200 33.7 33.5 35.1 35.1 34.9 81.0 52.4 7.0
200 300 24.6 24.3 26.3 26.1 26.1 81.0 42.3 5.6
300 100 51.6 51.9 52.7 53.0 52.9 81.4 77.5 10.8
300 200 33.6 33.4 35.1 35.1 34.9 81.0 52.5 6.1
300 300 24.4 24.2 26.2 26.0 25.9 81.0 42.3 4.7

2

100 100 10.3 9.6 17.7 17.8 16.2 36.8 50.6 9.0
100 200 6.4 6.1 8.8 8.7 8.6 36.5 34.4 6.0
100 300 5.0 4.8 6.0 5.8 5.8 36.4 27.8 4.8
200 100 8.6 7.8 16.8 16.9 15.1 36.6 50.7 7.0
200 200 4.9 4.5 7.8 7.7 7.6 36.4 34.4 4.4
200 300 3.8 3.6 5.0 4.9 4.8 36.3 27.8 3.5
300 100 7.8 6.9 16.5 16.7 14.7 36.6 50.6 6.2
300 200 4.3 3.9 7.4 7.4 7.2 36.3 34.4 3.7
300 300 3.3 3.0 4.6 4.4 4.4 36.3 27.8 2.9

Note: This table reports the RMSE of the GLP estimator with different weighting schemes.
UH, H, U, 2SLS, IV indicate unit-and-horizon specific weights, horizon-specific weights, unit-
specific weights, two stage least squares weights and IV weights respectively. Cells with the
lowest RMSE are in bold.
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Table S13: Compare weighting matrix: Band Ratios (%)

G0 = 2 G0 = 3

Design N T UH H U 2SLS IV IGLP UH H U 2SLS IV IGLP

1

100 100 14.5 15.9 15.3 15.6 15.8 15.7 17.7 20.3 18.6 19.1 19.5 19.3
100 200 14.3 15.0 14.7 14.9 15.0 14.8 17.5 18.8 18.0 18.3 18.4 18.1
100 300 14.2 14.7 14.5 14.6 14.7 14.5 17.4 18.2 17.7 18.0 18.1 17.7
200 100 10.3 11.2 10.8 11.0 11.2 11.2 12.5 14.4 13.2 13.6 13.8 13.8
200 200 10.1 10.6 10.4 10.5 10.6 10.6 12.3 13.3 12.7 13.0 13.1 12.9
200 300 10.1 10.4 10.3 10.3 10.4 10.3 12.3 12.9 12.6 12.7 12.8 12.6
300 100 8.4 9.2 8.8 9.0 9.1 9.2 10.2 11.8 10.8 11.1 11.3 11.3
300 200 8.3 8.7 8.5 8.6 8.7 8.6 10.1 10.9 10.4 10.6 10.7 10.6
300 300 8.2 8.5 8.4 8.5 8.5 8.5 10.0 10.5 10.3 10.4 10.4 10.4

2

100 100 14.6 15.9 15.3 15.8 16.0 15.7 17.9 19.5 19.0 19.6 19.8 19.0
100 200 14.3 15.0 14.7 14.9 15.0 14.8 17.5 18.3 18.0 18.3 18.4 17.9
100 300 14.2 14.7 14.5 14.6 14.7 14.5 17.4 18.0 17.7 17.9 18.0 17.6
200 100 10.4 11.3 10.9 11.2 11.3 11.2 12.7 13.8 13.5 13.9 14.1 13.7
200 200 10.1 10.6 10.4 10.5 10.6 10.6 12.4 13.0 12.7 13.0 13.0 12.8
200 300 10.1 10.4 10.3 10.3 10.4 10.3 12.3 12.7 12.5 12.7 12.7 12.6
300 100 8.5 9.2 8.9 9.1 9.3 9.2 10.4 11.3 11.0 11.4 11.5 11.2
300 200 8.3 8.7 8.5 8.6 8.7 8.6 10.1 10.6 10.4 10.6 10.7 10.5
300 300 8.2 8.5 8.4 8.5 8.5 8.5 10.0 10.4 10.2 10.3 10.4 10.3

Note: This table reports the band ratios of the GLP estimator with different weighting schemes. UH, H, U, 2SLS, IV in-
dicate unit-and-horizon specific weights, horizon-specific weights, unit-specific weights, two stage least squares weights and
IV weights respectively. Cells with the lowest band ratios are in bold.
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Table S14: Compare weighting matrix: Coverage Rates (%, Design 1, G0 = 2)

N T Weight h=0 h=1 h=2 h=3 h=4 h=5 h=6

100

100

UH -14.0 -2.3 -5.8 -8.5 -6.0 -4.7 -2.6
H -2.6 -1.3 -3.2 -5.1 -2.4 -0.9 0.7
U -1.1 3.1 -4.1 -8.6 -7.6 -4.7 -1.4

2SLS -2.2 -1.2 -5.4 -10.5 -8.5 -4.2 -0.4
IV -2.3 -0.3 -4.6 -7.9 -6.3 -2.5 0.9

IGLP 94.9 92.1 92.1 90.0 89.7 89.2 89.4

200

UH -6.8 -0.9 0.1 0.4 -1.2 -1.0 -0.5
H 0.0 0.1 1.9 1.5 0.6 0.6 1.4
U 1.0 0.4 1.3 0.6 -0.3 -0.5 0.5

2SLS 0.4 -1.5 0.4 -0.3 -0.1 -0.5 1.4
IV 0.5 -1.3 1.1 0.3 -0.1 -0.4 1.3

IGLP 94.1 93.2 93.2 92.5 92.2 92.8 92.4

300

UH -2.0 -0.5 0.4 1.4 -0.1 -0.5 0.7
H 0.5 0.2 1.8 2.8 1.3 1.3 2.0
U 0.4 0.0 1.7 2.4 0.9 0.4 0.9

2SLS 0.0 -2.1 2.0 2.3 1.1 0.4 1.8
IV 0.0 -1.6 2.0 2.5 1.1 0.9 2.0

IGLP 93.7 93.5 93.0 92.3 93.3 92.7 92.6

200

100

UH -26.2 -6.1 -11.3 -13.6 -10.4 -7.5 -4.4
H -4.0 -4.5 -7.4 -9.8 -6.9 -2.5 0.9
U -1.7 2.7 -8.9 -17.5 -13.3 -7.2 -3.7

2SLS -4.2 -4.8 -13.2 -21.1 -15.7 -8.1 -2.3
IV -4.2 -3.3 -11.0 -18.0 -13.2 -6.6 -1.1

IGLP 94.0 90.4 87.9 86.6 86.0 86.6 86.7

200

UH -14.2 -1.4 2.0 -1.2 -0.9 -1.8 -1.1
H -2.6 -0.9 2.3 0.8 0.6 1.0 0.5
U -0.7 0.1 2.8 -1.0 -1.4 -0.2 -1.1

2SLS -2.6 -6.4 0.7 -2.7 -2.0 -0.1 0.0
IV -2.4 -5.7 0.8 -2.1 -1.5 0.0 0.0

IGLP 95.1 92.8 90.9 91.1 90.0 89.6 90.9

300

UH -8.5 -1.1 1.4 0.9 -1.2 -1.3 -1.1
H -1.3 0.6 2.1 2.6 1.5 0.8 1.2
U -0.3 0.1 2.7 2.1 0.6 -0.3 -0.1

2SLS -0.9 -3.4 1.3 1.8 0.6 0.7 1.1
IV -1.4 -3.3 1.2 2.1 0.4 0.9 1.2

IGLP 94.9 92.8 92.2 91.4 92.2 91.4 91.3

300

100

UH -35.8 -10.8 -18.2 -19.7 -12.5 -8.5 -3.8
H -8.5 -10.5 -16.6 -17.2 -9.4 -3.0 2.6
U -3.9 3.3 -17.3 -28.4 -18.7 -10.3 -3.8

2SLS -8.0 -8.7 -24.2 -35.2 -22.5 -12.0 -2.3
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IV -7.7 -7.4 -21.5 -31.0 -18.6 -9.0 0.0
IGLP 95.0 89.6 86.7 83.9 81.2 81.6 79.8

200

UH -19.2 -4.8 1.8 -1.2 -2.9 -2.6 -2.1
H -2.6 -4.3 1.8 1.7 0.3 0.2 1.1
U -1.5 -1.0 2.5 -1.6 -4.0 -3.3 -1.8

2SLS -2.9 -12.0 -0.8 -3.7 -4.1 -3.6 0.1
IV -2.9 -11.0 -0.7 -3.3 -3.1 -3.1 0.8

IGLP 95.9 93.1 89.8 89.8 88.9 88.5 88.7

300

UH -11.1 -1.3 1.7 -0.2 -1.3 -1.2 -1.2
H -1.2 -0.8 3.1 2.2 1.9 0.9 1.6
U -0.2 -0.8 3.2 1.6 -0.4 -0.7 -0.3

2SLS -1.4 -7.0 2.4 1.3 0.1 0.0 1.3
IV -1.0 -5.9 2.4 1.7 0.6 0.0 1.2

IGLP 94.9 93.6 92.9 92.5 91.1 91.4 89.2

Note: This table provides the coverage rates for the infeasible GLP and the differences
between IGLP and the GLP.
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Table S16: Compare weighting matrix: Coverage Rates (%, Design 2, G0 = 2)

N T Weight h=0 h=1 h=2 h=3 h=4 h=5 h=6

100

100

UH -14.0 -4.8 -9.6 -7.9 -6.3 -4.7 -3.8
H -0.7 -0.3 -0.2 -0.7 0.1 0.1 0.1
U -6.8 -4.6 -5.7 -4.0 -3.8 -2.6 -1.8

2SLS -20.6 -1.6 -4.0 -1.9 -1.9 -0.5 -0.2
IV -18.8 -1.0 -3.2 -2.0 -1.1 -0.4 -0.4

IGLP 94.9 92.1 92.1 90.0 89.7 89.2 89.4

200

UH -6.2 -1.7 -3.8 -4.8 -2.3 -1.9 -0.5
H 0.0 0.4 0.1 -0.3 0.4 0.4 1.1
U -1.3 -2.3 -3.8 -3.5 -1.5 -0.9 -0.2

2SLS -3.8 0.5 -0.4 -0.8 0.6 0.3 1.3
IV -3.3 0.8 -0.7 -0.7 0.3 0.3 1.4

IGLP 94.1 93.2 93.2 92.5 92.2 92.8 92.4

300

UH -4.2 -1.4 -3.0 -1.3 -1.2 -1.3 -0.6
H 0.2 0.3 -0.1 0.7 0.8 0.6 0.8
U 1.0 -2.5 -2.3 -0.8 -0.6 0.0 -0.2

2SLS -0.1 0.2 -0.1 0.5 0.7 0.5 0.4
IV -0.3 0.2 0.0 0.6 0.8 0.8 0.7

IGLP 93.7 93.5 93.0 92.3 93.3 92.7 92.6

200

100

UH -26.6 -5.9 -15.4 -15.8 -9.5 -7.4 -5.7
H -4.0 -0.6 -0.6 -1.5 0.1 -0.6 0.8
U -9.3 -10.3 -12.8 -10.5 -6.0 -5.4 -3.8

2SLS -33.7 -3.7 -8.5 -6.3 -2.9 -1.7 -0.5
IV -32.1 -2.6 -6.9 -5.5 -1.7 -1.5 0.6

IGLP 94.0 90.4 87.9 86.6 86.0 86.6 86.7

200

UH -11.9 -2.6 -8.2 -8.9 -5.8 -4.2 -2.8
H -0.5 0.4 0.3 -0.5 -0.6 -0.3 0.0
U -0.1 -4.8 -7.4 -6.4 -4.9 -3.8 -2.9

2SLS -7.1 0.4 -0.6 -1.3 -1.5 -1.1 0.1
IV -6.6 0.3 0.0 -1.2 -1.0 -1.3 0.2

IGLP 95.1 92.8 90.9 91.1 90.0 89.6 90.9

300

UH -6.4 -1.9 -5.5 -5.6 -3.2 -2.2 -1.9
H -0.2 0.2 -0.9 0.0 0.6 -0.1 0.2
U -0.1 -5.0 -5.6 -4.0 -2.8 -1.8 -1.4

2SLS -1.6 0.0 -1.1 -0.5 0.1 -0.2 0.1
IV -1.4 0.1 -1.2 -0.5 0.1 -0.1 0.1

IGLP 94.9 92.8 92.2 91.4 92.2 91.4 91.3

300

100

UH -37.1 -9.3 -21.6 -19.7 -13.9 -9.0 -6.3
H -4.2 -0.5 -2.0 -1.8 -1.4 -1.6 -0.5
U -13.2 -15.3 -18.5 -13.3 -9.8 -8.4 -6.0

2SLS -44.6 -7.8 -12.7 -9.7 -4.4 -3.0 -1.7
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IV -42.8 -6.1 -10.4 -8.1 -4.3 -2.9 -1.1
IGLP 95.0 89.6 86.7 83.9 81.2 81.6 79.8

200

UH -16.4 -4.2 -11.4 -10.7 -8.3 -5.1 -3.2
H -1.3 -1.2 -0.1 -0.7 -0.7 -0.1 -1.5
U -0.9 -9.9 -10.8 -8.6 -7.1 -4.7 -3.9

2SLS -9.7 -0.5 -1.5 -2.5 -1.9 -0.9 -1.2
IV -9.4 -0.1 -1.5 -2.1 -1.7 -0.8 -1.0

IGLP 95.9 93.1 89.8 89.8 88.9 88.5 88.7

300

UH -11.6 -3.1 -7.1 -5.2 -5.1 -2.6 -2.2
H -0.6 -0.6 -0.2 0.1 -0.5 0.1 0.1
U -0.6 -8.0 -7.7 -4.7 -4.8 -2.7 -2.8

2SLS -2.6 -0.4 -0.6 -0.9 -0.7 0.0 -0.4
IV -2.5 -0.6 -0.4 -0.6 -0.7 0.0 -0.2

IGLP 94.9 93.6 92.9 92.5 91.1 91.4 89.2
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Table S17: Compare weighting matrix: Coverage Rates (%, Design 1, G0 = 3)

N T Weight h=0 h=1 h=2 h=3 h=4 h=5 h=6

100

100

UH -8.1 -6.4 -2.8 -0.1 1.5 2.6 1.3
H 0.0 -4.5 -2.1 0.8 3.4 5.6 6.9
U 0.9 -1.1 -2.5 -1.7 1.4 4.3 4.3

2SLS 0.1 -8.9 -9.2 -6.0 -1.1 2.5 4.8
IV 0.5 -5.9 -6.5 -3.1 0.5 3.8 5.6

IGLP 94.9 92.1 92.1 90.0 89.7 89.2 89.4

200

UH -4.6 -3.4 -1.0 1.2 1.6 2.6 0.7
H -0.1 -2.3 -1.4 0.4 1.9 4.4 4.7
U 0.7 -1.6 -1.4 0.1 1.2 3.7 3.4

2SLS 0.7 -8.1 -7.1 -4.1 -0.9 2.9 3.4
IV 0.5 -6.1 -5.6 -2.8 0.0 3.6 3.8

IGLP 94.1 93.2 93.2 92.5 92.2 92.8 92.4

300

UH -2.1 -1.5 1.5 1.2 0.2 0.3 0.0
H 0.5 -0.2 1.2 1.7 2.1 2.5 3.2
U 0.8 -1.0 1.2 1.0 0.5 1.4 2.1

2SLS 0.5 -4.8 -2.3 -1.2 0.1 1.8 3.0
IV 0.4 -4.0 -1.4 -0.4 0.5 2.4 3.2

IGLP 93.7 93.5 93.0 92.3 93.3 92.7 92.6

200

100

UH -16.3 -15.0 -9.7 -2.3 3.1 4.5 3.6
H -1.9 -14.8 -13.0 -4.5 3.0 7.8 11.2
U -0.1 -4.9 -11.4 -6.9 -0.8 5.2 7.1

2SLS -1.7 -20.3 -24.4 -19.4 -7.4 0.1 6.8
IV -1.8 -16.1 -20.5 -14.5 -4.3 2.0 7.7

IGLP 94.0 90.4 87.9 86.6 86.0 86.6 86.7

200

UH -9.3 -8.5 -3.5 -0.8 1.0 1.4 -0.9
H -1.1 -8.0 -7.3 -2.5 1.3 3.4 4.5
U -0.6 -4.1 -5.1 -3.3 0.4 2.0 3.1

2SLS -1.4 -17.0 -16.5 -11.3 -4.8 -0.4 2.3
IV -1.3 -14.1 -13.4 -9.4 -2.7 1.1 3.8

IGLP 95.1 92.8 90.9 91.1 90.0 89.6 90.9

300

UH -4.5 -4.4 0.0 0.6 0.0 -0.4 -1.8
H 0.0 -2.5 -1.4 0.9 1.7 3.9 3.5
U 1.0 -1.9 -0.6 0.2 0.4 1.9 1.9

2SLS 0.1 -10.3 -7.8 -4.1 -1.6 2.1 2.6
IV 0.1 -8.3 -6.6 -2.8 -0.7 2.8 3.1

IGLP 94.9 92.8 92.2 91.4 92.2 91.4 91.3

300

100

UH -25.0 -21.8 -15.6 -5.3 1.6 6.2 2.6
H -4.7 -23.0 -20.2 -8.6 0.5 8.1 13.5
U -1.6 -7.9 -17.3 -11.0 -3.7 4.9 8.4

2SLS -4.3 -26.4 -32.3 -29.7 -15.9 -3.0 6.0
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IV -3.9 -22.2 -28.0 -23.3 -10.9 -0.1 7.6
IGLP 95.0 89.6 86.7 83.9 81.2 81.6 79.8

200

UH -13.6 -11.8 -4.9 -0.2 0.9 1.2 0.0
H -2.9 -10.7 -9.9 -4.1 0.2 3.7 7.0
U -1.0 -5.6 -7.4 -4.4 -1.0 2.7 4.9

2SLS -2.6 -23.0 -21.8 -17.5 -8.5 -1.2 4.4
IV -2.7 -19.7 -19.3 -14.4 -6.2 0.4 5.4

IGLP 95.9 93.1 89.8 89.8 88.9 88.5 88.7

300

UH -9.2 -5.7 -0.9 0.0 0.0 -1.4 -4.6
H -1.7 -4.5 -3.9 -0.5 1.4 3.0 4.3
U -0.8 -2.8 -3.2 -1.5 0.5 1.8 0.8

2SLS -1.9 -13.6 -11.8 -7.4 -3.0 1.2 2.8
IV -1.8 -12.1 -10.2 -6.2 -1.9 1.9 3.5

IGLP 94.9 93.6 92.9 92.5 91.1 91.4 89.2
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Table S18: Compare weighting matrix: Coverage Rates (%, Design 2, G0 = 3)

N T Weight h=0 h=1 h=2 h=3 h=4 h=5 h=6

100

100

UH -10.1 -3.6 -7.7 -6.4 -4.3 -3.8 -3.5
H -0.8 1.1 0.8 0.4 0.8 0.7 0.7
U -32.9 -5.3 -11.4 -10.9 -8.1 -6.3 -4.6

2SLS -42.6 -4.3 -11.6 -10.7 -7.1 -4.4 -2.9
IV -38.4 -2.2 -6.8 -5.9 -2.5 -1.3 0.0

IGLP 94.9 92.1 92.1 90.0 89.7 89.2 89.4

200

UH -4.0 -0.8 -3.1 -2.6 -1.8 -1.1 -0.6
H 0.6 1.1 1.1 1.2 1.1 1.2 1.0
U -8.5 -0.6 -1.8 -1.8 -1.2 -0.4 0.0

2SLS -16.3 1.1 -0.3 -0.6 -0.2 0.7 0.7
IV -14.5 1.4 0.2 0.3 0.6 1.1 0.5

IGLP 94.1 93.2 93.2 92.5 92.2 92.8 92.4

300

UH -1.2 -0.1 -1.4 -1.3 -0.9 0.2 0.0
H 1.3 1.0 1.0 1.3 1.0 1.5 1.1
U -1.8 0.0 -0.9 -0.5 -0.3 0.5 0.5

2SLS -5.3 1.4 0.4 0.8 0.4 1.7 1.4
IV -4.7 1.6 0.4 1.0 0.7 1.5 1.2

IGLP 93.7 93.5 93.0 92.3 93.3 92.7 92.6

200

100

UH -18.3 -4.8 -12.9 -11.8 -8.8 -6.7 -4.5
H -1.8 0.6 -0.6 -0.8 -0.6 0.1 1.1
U -42.9 -12.0 -22.4 -18.3 -14.5 -10.4 -7.8

2SLS -51.8 -11.4 -25.4 -19.3 -13.2 -7.3 -3.4
IV -47.6 -7.2 -16.5 -11.2 -6.8 -2.6 -0.7

IGLP 94.0 90.4 87.9 86.6 86.0 86.6 86.7

200

UH -7.5 -2.2 -6.3 -5.9 -4.3 -2.3 -3.0
H 0.2 0.2 -0.4 -0.1 0.0 0.7 0.2
U -13.4 -2.9 -5.0 -3.5 -2.7 -2.0 -1.8

2SLS -23.7 -0.2 -2.5 -2.4 -1.3 -0.5 -0.8
IV -22.6 0.2 -1.7 -1.3 -0.6 0.2 -0.3

IGLP 95.1 92.8 90.9 91.1 90.0 89.6 90.9

300

UH -5.4 -1.4 -2.9 -3.3 -3.1 -1.5 -1.2
H -0.2 0.0 -0.1 0.2 0.3 0.5 0.7
U -4.2 -3.0 -3.0 -2.5 -2.4 -1.0 -1.0

2SLS -10.2 0.7 0.2 -0.6 -0.4 -0.1 0.5
IV -10.0 0.8 -0.1 -0.3 -0.1 0.2 0.8

IGLP 94.9 92.8 92.2 91.4 92.2 91.4 91.3

300

100

UH -26.8 -7.7 -16.8 -16.2 -12.1 -8.4 -6.2
H -3.1 -0.8 -0.8 -0.9 -0.6 -0.4 -0.4
U -48.9 -20.7 -29.0 -23.1 -17.3 -13.0 -9.8

2SLS -59.2 -19.3 -31.9 -24.6 -17.4 -11.2 -6.5
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IV -52.8 -14.1 -20.8 -14.9 -8.4 -4.0 -2.1
IGLP 95.0 89.6 86.7 83.9 81.2 81.6 79.8

200

UH -12.0 -3.4 -9.6 -7.6 -6.2 -4.2 -3.1
H -0.8 -0.6 -0.9 -1.0 0.1 -0.4 -0.1
U -17.9 -6.5 -9.1 -6.3 -4.6 -3.1 -2.5

2SLS -30.0 -1.5 -4.6 -3.7 -1.9 -0.9 -1.0
IV -28.7 -1.0 -4.3 -2.8 -1.5 -0.7 -0.4

IGLP 95.9 93.1 89.8 89.8 88.9 88.5 88.7

300

UH -7.0 -2.5 -6.2 -5.0 -4.5 -2.6 -1.3
H -0.4 -0.3 -0.6 -0.1 -0.3 0.5 0.3
U -4.5 -5.3 -5.8 -4.1 -3.3 -2.2 -1.7

2SLS -11.7 -0.2 -1.5 -0.8 -1.1 0.0 -0.1
IV -11.0 -0.2 -1.3 -0.4 -0.8 0.5 0.0

IGLP 94.9 93.6 92.9 92.5 91.1 91.4 89.2

89



Table S19: Compare Inference Methods: Band Ratios (%)

G0 = 2 G0 = 3

Design N T Large T Small T Large T Small T

1

100 100 15.8 16.1 20.3 20.9
100 200 15.0 15.1 18.8 19.0
100 300 14.7 14.8 18.2 18.4
200 100 11.2 11.4 14.4 14.8
200 200 10.6 10.7 13.3 13.4
200 300 10.4 10.5 12.9 13.0
300 100 9.2 9.3 11.8 12.1
300 200 8.7 8.7 10.9 11.0
300 300 8.5 8.5 10.5 10.6

2

100 100 15.9 16.1 19.5 19.7
100 200 15.0 15.1 18.3 18.5
100 300 14.7 14.8 18.0 18.1
200 100 11.3 11.4 13.8 14.0
200 200 10.6 10.7 13.0 13.1
200 300 10.4 10.4 12.7 12.8
300 100 9.2 9.3 11.3 11.4
300 200 8.7 8.7 10.6 10.7
300 300 8.5 8.5 10.4 10.4

Note: This table reports the band ratios for Large T inference (Theo-
rem 2) and small T adjustment (Proposition ??) respectively.
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Table S20: Large T Inference Coverage Rates (%)

G0 = 2 G0 = 3

Design N T h=0 h=1 h=2 h=3 h=4 h=5 h=6 h=0 h=1 h=2 h=3 h=4 h=5 h=6

1

100 100 92.0 91.2 88.3 86.6 88.2 89.2 89.6 93.5 86.9 88.2 90.7 92.4 93.8 94.1
100 200 92.2 92.9 93.8 94.0 93.8 92.1 91.7 94.1 90.4 91.0 93.7 94.2 94.9 94.7
100 300 94.4 93.6 95.4 94.9 94.3 93.2 94.3 94.8 93.9 93.4 93.9 94.4 95.3 94.7
200 100 89.8 86.0 80.2 76.7 80.0 84.5 86.1 91.7 76.4 76.6 83.9 87.2 90.3 93.6
200 200 93.3 91.7 93.1 92.1 92.4 91.0 90.6 93.5 86.1 86.6 89.5 92.2 94.0 94.7
200 300 94.1 92.7 95.1 94.3 92.9 92.2 92.9 95.1 90.2 91.5 91.5 92.3 94.2 94.2
300 100 88.1 80.7 71.2 70.1 73.8 80.3 81.5 90.1 65.6 66.8 75.9 83.8 88.1 91.7
300 200 91.7 88.9 92.3 89.8 88.4 88.7 87.7 92.5 81.2 81.7 86.2 89.3 92.5 93.4
300 300 92.9 92.0 95.9 94.3 92.3 90.8 90.8 94.0 89.9 88.9 90.8 92.1 92.9 93.0

2

100 100 93.6 93.2 92.3 90.6 90.9 90.9 91.4 93.5 93.8 91.8 90.6 91.9 91.0 92.1
100 200 94.7 94.0 93.3 92.2 92.9 93.9 93.9 93.9 94.1 93.8 93.5 92.9 92.6 93.3
100 300 94.9 94.2 94.5 93.3 93.7 93.7 94.4 94.2 94.0 94.2 94.3 93.3 94.6 93.6
200 100 91.4 91.2 88.6 87.6 88.2 87.5 87.8 92.7 91.4 90.2 89.2 88.6 88.0 89.0
200 200 94.2 93.5 92.9 91.4 92.2 92.1 90.7 94.1 93.4 92.5 93.3 93.1 91.7 91.5
200 300 94.6 92.6 92.4 93.7 93.5 93.3 93.4 94.4 93.8 93.5 92.4 93.1 92.6 92.5
300 100 89.0 90.8 85.7 83.4 82.8 83.5 83.6 92.1 89.5 87.7 86.2 86.9 87.3 86.6
300 200 92.4 92.4 90.7 89.0 89.1 89.0 90.1 93.7 92.7 91.4 90.6 91.2 91.0 91.0
300 300 93.1 93.4 91.4 91.9 90.7 91.0 91.0 94.1 93.3 93.6 92.8 91.8 91.1 90.9

Note: This table reports the coverage probability of the large T inference as in Theorem 2.
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Table S21: Small T Adjustment Coverage Rates (%)

G0 = 2 G0 = 3

Design N T h=0 h=1 h=2 h=3 h=4 h=5 h=6 h=0 h=1 h=2 h=3 h=4 h=5 h=6

1

100 100 92.2 91.7 88.9 87.6 88.8 89.9 90.4 93.7 88.1 89.5 91.9 92.9 94.6 95.0
100 200 92.3 93.2 93.9 94.1 94.1 92.5 92.6 94.2 90.9 91.6 94.1 94.7 95.3 95.2
100 300 94.6 93.8 95.7 95.1 94.5 93.4 94.2 94.8 94.1 93.6 94.0 94.6 95.4 95.1
200 100 89.8 86.5 81.3 77.8 80.8 85.0 86.4 91.7 77.3 78.2 85.0 87.8 91.2 94.1
200 200 93.4 91.9 93.4 92.1 92.7 91.1 91.0 93.6 86.6 87.2 90.0 92.7 94.3 94.9
200 300 94.2 92.7 95.2 94.5 93.2 92.5 92.9 95.2 90.5 91.8 91.8 92.6 94.5 94.3
300 100 87.9 81.7 72.3 71.4 74.8 80.9 82.3 90.1 66.6 68.6 77.3 84.4 88.7 92.2
300 200 91.8 89.0 92.5 90.2 88.8 88.9 87.9 92.1 81.7 82.1 86.9 89.9 93.0 93.9
300 300 92.8 92.1 95.8 94.4 92.3 91.2 91.2 94.0 90.1 89.4 91.1 92.5 93.0 93.1

2

100 100 93.7 93.6 92.5 91.0 91.5 91.5 91.7 93.4 93.9 92.4 91.3 92.6 91.6 92.4
100 200 94.7 94.1 93.5 92.6 93.0 94.0 94.3 93.9 94.3 94.1 93.7 93.2 92.8 93.5
100 300 94.9 94.3 94.5 93.4 94.0 93.8 94.5 94.4 94.2 94.3 94.5 93.5 94.9 93.8
200 100 91.3 91.3 89.1 87.9 88.8 88.2 88.3 92.7 91.3 90.7 89.8 89.2 88.5 89.9
200 200 94.1 93.6 93.1 91.8 92.2 92.2 90.9 94.3 93.5 93.1 93.5 93.1 92.1 91.7
200 300 94.6 92.7 92.5 93.9 93.8 93.5 93.5 94.4 93.8 93.5 92.5 93.3 92.9 92.8
300 100 88.9 90.8 86.0 84.1 83.5 84.5 84.3 92.1 89.4 87.8 86.7 87.5 87.9 87.6
300 200 92.4 92.2 90.9 89.1 89.3 89.1 90.3 93.6 92.6 91.7 90.7 91.4 91.4 91.1
300 300 93.2 93.4 91.5 92.0 90.7 91.1 91.2 94.2 93.4 93.7 92.8 92.1 91.3 91.0

Note: This table reports the coverage probability of the small T adjustment as in Proposition ??.
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Table S22: GLP Performance (First-Differenced)

G0 = 2 G0 = 3

BR (%) RMSE (×100) BR (%) RMSE (×100)
Design N T AC (%) GLP IGLP GLP PAN IND IGLP AC (%) GLP IGLP GLP PAN IND IGLP

1

100 100 84.6 15.3 13.8 29.9 33.8 84.6 10.9 77.5 21.6 14.2 60.8 82.8 2003.9 16.7
100 200 93.2 14.7 13.3 18.8 33.3 54.7 7.4 89.6 20.1 13.4 37.5 82.5 108.8 10.9
100 300 96.7 14.5 13.1 13.2 33.2 43.7 6.0 94.7 19.5 13.1 26.7 82.4 53.2 8.6
200 100 84.8 10.8 9.8 28.8 33.4 87.0 7.6 77.1 15.5 10.2 60.1 82.6 67124.6 11.8
200 200 93.3 10.4 9.5 17.9 33.1 54.6 5.3 89.6 14.3 9.6 36.9 82.4 6292.9 7.6
200 300 96.7 10.2 9.3 12.6 33.1 43.7 4.3 94.6 13.9 9.4 26.3 82.3 53.1 6.1
300 100 84.7 8.8 8.1 28.6 33.2 85.3 6.2 77.0 12.7 8.3 59.9 82.5 4156.9 9.7
300 200 93.2 8.5 7.7 17.9 33.1 54.7 4.4 89.7 11.7 7.9 36.5 82.4 250.7 6.3
300 300 96.7 8.4 7.6 12.4 33.0 43.7 3.5 94.7 11.3 7.7 26.1 82.3 54.3 5.0

2

100 100 98.5 15.3 13.8 8.5 22.3 50.1 6.2 97.8 18.8 16.6 12.2 36.8 65.3 9.8
100 200 99.9 14.7 13.3 4.6 22.0 31.4 4.3 99.8 18.0 16.0 7.1 36.5 41.8 6.7
100 300 100.0 14.5 13.2 3.6 22.0 25.1 3.5 100.0 17.7 15.9 5.6 36.4 33.4 5.4
200 100 98.4 10.9 9.8 7.4 22.0 70.6 4.4 97.7 13.4 11.9 10.1 36.5 64.4 7.0
200 200 99.9 10.4 9.5 3.4 21.9 31.4 3.0 99.8 12.7 11.5 5.2 36.4 41.8 4.8
200 300 100.0 10.2 9.4 2.6 21.9 25.1 2.5 100.0 12.5 11.4 4.0 36.3 33.4 3.8
300 100 98.4 8.9 8.0 6.8 22.0 123.0 3.6 97.7 10.9 9.8 9.2 36.4 70.6 5.7
300 200 99.9 8.5 7.8 3.0 21.9 31.4 2.5 99.8 10.4 9.4 4.5 36.3 41.8 3.9
300 300 100.0 8.4 7.7 2.1 21.9 25.0 2.0 100.0 10.2 9.3 3.3 36.3 33.4 3.2

Note: This table reports the classification accuracy (AC), the confidence bands ratios between the GLP and the individual LP-IV (BR), and the RMSE of
the GLP. GLP, PAN, IND and IGLP stand for the GLP, panel LP-IV, individual LP-IV and the infeasible GLP respectively. The infeasible GLP is group-
by-group using standard panel LP-IV where we know the true group structure beforehand. Classification accuracy and band ratios are in percentage terms,
and RMSE are multiplied by 100.
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Table S23: GLP Coverage Rates (%, First-Differenced)

G0 = 2 G0 = 3

Design N T h=0 h=1 h=2 h=3 h=4 h=5 h=6 h=0 h=1 h=2 h=3 h=4 h=5 h=6

1

100 100 93.1 91.3 91.5 95.4 94.7 94.3 94.8 97.9 96.2 97.4 98.4 98.6 98.5 98.3
100 200 94.8 96.3 95.7 97.0 96.5 97.0 96.0 97.9 97.3 98.3 98.4 98.2 98.3 98.1
100 300 96.1 97.1 97.3 96.8 96.4 95.6 96.8 98.0 97.4 98.2 98.1 97.9 97.8 98.4
200 100 91.4 85.1 84.6 93.9 95.9 94.3 94.5 97.7 91.7 95.2 97.8 98.4 97.9 98.5
200 200 94.0 94.8 94.7 96.0 96.8 96.2 95.5 97.9 96.5 96.4 98.0 97.8 98.2 98.5
200 300 95.4 96.6 96.2 97.2 95.8 97.3 97.0 98.3 97.0 96.7 97.3 97.5 98.0 98.2
300 100 88.6 79.2 75.8 93.1 96.1 94.1 93.3 97.1 87.5 92.8 97.6 97.9 98.0 98.6
300 200 93.1 94.0 92.5 97.1 95.9 95.1 95.0 97.3 95.1 95.1 97.2 98.3 98.1 98.1
300 300 94.7 96.0 96.3 97.1 95.9 95.8 95.6 97.6 96.3 95.5 97.2 98.3 98.3 98.3

2

100 100 95.0 93.8 94.8 95.8 95.6 96.8 96.9 95.0 95.2 95.3 95.8 95.7 96.5 96.5
100 200 95.0 94.7 95.3 95.9 96.2 96.3 96.5 96.3 95.4 95.9 96.6 96.8 96.9 97.2
100 300 96.3 95.7 95.7 96.3 96.0 95.8 96.5 96.2 95.6 96.3 96.5 96.2 97.3 97.3
200 100 92.7 91.3 93.8 95.7 95.6 97.1 96.3 93.2 92.9 94.8 95.2 96.1 96.6 95.9
200 200 95.8 94.7 95.4 95.8 96.8 96.6 96.8 96.1 94.5 94.8 95.6 96.7 96.4 96.4
200 300 95.9 94.2 95.4 96.2 96.1 96.1 96.7 96.3 95.6 96.0 97.0 96.2 96.4 96.3
300 100 91.9 89.1 93.1 94.1 96.2 96.4 97.1 92.5 91.7 93.5 95.6 95.7 96.3 96.2
300 200 94.8 92.8 93.8 95.8 96.8 96.1 96.5 95.2 93.3 94.6 95.5 96.3 95.8 96.1
300 300 94.7 94.0 94.9 96.3 96.6 96.1 96.9 96.5 94.2 95.9 96.4 96.1 96.6 96.5

Note: This table reports the coverage probability of the large T inference as in Theorem 2.
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Table S24: Infeasible GLP Coverage Rates (%, First-Differenced)

G0 = 2 G0 = 3

Design N T h=0 h=1 h=2 h=3 h=4 h=5 h=6 h=0 h=1 h=2 h=3 h=4 h=5 h=6

1

100 100 94.0 93.4 94.6 93.5 92.8 95.2 94.5 93.0 94.4 95.0 94.2 94.0 94.1 94.1
100 200 93.4 93.9 94.2 95.1 94.4 94.0 93.9 93.7 93.6 94.0 93.0 93.8 93.2 93.9
100 300 95.4 94.9 95.0 93.8 93.4 92.9 93.9 93.9 93.2 93.5 94.0 93.2 93.6 94.2
200 100 93.2 94.1 94.7 94.0 95.2 95.1 94.8 94.1 95.1 94.9 94.1 95.2 95.0 94.5
200 200 94.1 94.5 94.1 94.5 94.7 95.4 93.4 94.9 94.4 94.6 94.7 94.7 95.3 94.2
200 300 94.3 95.3 94.7 95.2 93.9 95.7 95.1 94.6 95.2 93.7 94.4 93.8 93.7 94.2
300 100 94.6 94.1 95.2 95.2 95.2 94.9 95.0 94.6 95.2 94.4 94.5 94.6 94.4 94.5
300 200 94.9 94.3 94.0 95.4 94.3 95.0 94.0 94.7 95.4 94.7 94.6 94.4 94.6 94.7
300 300 95.2 94.8 94.6 94.1 93.9 93.6 94.0 94.5 94.5 95.1 94.5 94.6 94.6 94.6

2

100 100 95.1 93.5 93.9 94.3 93.8 94.4 94.7 94.1 94.1 93.8 92.9 93.2 93.8 93.8
100 200 93.9 93.8 94.1 93.8 93.0 94.8 94.1 93.8 93.4 94.1 94.0 93.7 93.9 94.6
100 300 94.8 94.5 93.7 94.0 93.7 93.7 93.7 93.3 93.4 93.7 94.0 93.5 94.2 93.9
200 100 95.5 94.4 95.5 95.5 94.7 95.0 94.8 94.2 94.3 94.2 93.7 94.6 94.6 93.8
200 200 95.4 94.0 94.7 94.5 95.0 94.7 94.4 95.2 93.5 93.8 94.1 94.5 94.9 94.6
200 300 95.1 94.6 94.6 94.5 94.5 94.8 95.3 94.5 94.8 95.3 94.6 94.0 94.3 94.0
300 100 94.1 95.2 94.9 94.6 95.2 94.9 95.3 94.7 94.0 94.7 94.6 94.6 94.4 94.1
300 200 94.3 94.7 93.9 95.4 95.4 94.3 94.8 93.9 94.4 93.8 94.6 94.9 93.5 94.0
300 300 94.0 95.4 94.8 94.7 95.1 94.0 94.2 95.1 94.1 94.9 95.0 95.1 94.9 94.4

Note: Standard errors are clustered at individual level (Cameron and Miller, 2015).
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Table S25: Compare GMM Criteria

G0 = 2 G0 = 3

BR (%) RMSE (×100) BR (%) RMSE (×100)
Design N T POOL BASE POOL BASE POOL BASE POOL BASE

1

100 100 15.7 15.7 10.0 10.3 19.3 19.3 15.2 17.2
100 200 14.8 14.9 6.5 6.6 18.1 18.2 9.5 10.4
100 300 14.5 14.6 5.2 5.3 17.6 17.9 7.5 8.0
200 100 11.2 11.1 7.9 8.4 13.8 13.6 12.3 14.8
200 200 10.5 10.5 4.8 5.0 12.9 12.9 7.2 8.3
200 300 10.3 10.4 3.8 4.0 12.6 12.7 5.5 6.1
300 100 9.2 9.1 7.0 7.5 11.3 11.2 10.9 13.6
300 200 8.6 8.6 4.2 4.4 10.6 10.5 6.3 7.5
300 300 8.5 8.5 3.2 3.3 10.4 10.4 4.7 5.5

2

100 100 15.7 15.6 5.9 6.0 19.0 19.1 9.1 9.3
100 200 14.8 14.9 3.9 4.0 17.9 18.2 5.9 6.0
100 300 14.5 14.6 3.1 3.1 17.6 17.9 4.7 4.8
200 100 11.2 11.1 4.5 4.7 13.6 13.5 7.0 7.2
200 200 10.5 10.5 2.9 3.0 12.8 12.9 4.4 4.5
200 300 10.3 10.3 2.3 2.3 12.6 12.6 3.4 3.5
300 100 9.2 9.0 4.0 4.2 11.2 11.1 6.1 6.4
300 200 8.6 8.6 2.5 2.6 10.5 10.5 3.8 3.9
300 300 8.5 8.4 1.9 2.0 10.3 10.3 2.9 3.0

Note: Column POOL indicates the fully-pooled GMM criterion, Column BASE indicates the baseline GLP
criterion, and Column DIFF shows the difference.
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Table S26: Coverage Rates (%): Fully-Pooled GMM

G0 = 2 G0 = 3

Design N T h=0 h=1 h=2 h=3 h=4 h=5 h=6 h=0 h=1 h=2 h=3 h=4 h=5 h=6

1

100 100 94.4 92.5 90.5 90.2 90.8 89.0 89.9 93.4 92.4 90.0 89.8 87.9 87.1 87.5
100 200 93.4 93.4 91.9 92.2 92.2 92.2 92.3 93.8 93.5 93.1 92.6 90.9 91.1 89.8
100 300 92.6 93.3 93.7 93.2 93.2 92.7 92.4 93.9 93.7 93.8 92.5 92.0 91.6 92.1
200 100 94.2 91.1 88.4 86.9 85.6 85.2 84.1 93.9 91.1 89.1 86.7 84.3 83.8 82.2
200 200 93.7 92.6 92.2 91.3 90.8 90.3 90.4 94.0 92.7 91.4 91.4 90.8 89.9 89.0
200 300 94.5 93.2 92.5 91.6 91.9 92.0 90.8 94.2 93.7 93.2 93.1 92.5 91.1 91.5
300 100 94.1 89.1 84.8 84.0 81.4 81.8 81.9 94.7 91.6 87.4 84.2 80.6 78.9 77.1
300 200 93.8 92.6 91.4 89.3 89.0 88.7 88.9 94.2 91.5 90.9 89.9 88.2 87.3 86.4
300 300 94.2 94.6 91.9 91.6 90.2 91.2 91.0 94.3 93.6 92.4 91.8 91.6 90.6 89.9

2

100 100 94.4 92.9 91.7 90.3 90.3 91.1 90.4 93.5 92.5 90.9 90.6 90.3 90.5 90.4
100 200 93.8 92.7 93.2 92.9 93.0 91.3 92.8 93.8 93.2 92.4 92.0 92.5 92.7 92.9
100 300 94.1 94.4 94.2 93.3 93.4 92.7 92.5 93.9 93.9 93.0 93.0 93.2 93.5 92.8
200 100 95.0 92.2 90.5 89.1 88.0 88.9 87.1 94.8 93.3 90.6 88.6 89.8 88.1 88.2
200 200 94.4 93.7 92.8 91.2 90.8 89.9 91.2 95.0 94.2 93.0 92.3 91.8 91.3 92.2
200 300 93.6 93.9 93.4 92.5 91.3 92.2 92.2 93.7 93.6 92.4 93.1 93.3 93.4 92.7
300 100 94.3 91.4 86.9 85.4 85.0 83.1 84.6 95.1 90.8 88.6 87.2 85.6 85.9 86.1
300 200 94.3 93.5 91.0 89.9 89.6 89.6 89.9 94.2 93.5 92.4 91.1 90.7 90.5 91.1
300 300 94.1 93.3 91.7 91.4 91.8 91.4 91.8 94.5 92.9 92.6 92.5 92.2 92.1 92.1

Note: Standard errors are clustered at individual level (Cameron and Miller, 2015).
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Table S27: Coverage Rates (%): Baseline GLP

G0 = 2 G0 = 3

Design N T h=0 h=1 h=2 h=3 h=4 h=5 h=6 h=0 h=1 h=2 h=3 h=4 h=5 h=6

1

100 100 93.5 91.8 89.8 89.6 90.0 88.7 89.5 94.5 91.1 88.2 87.1 84.3 83.8 83.2
100 200 94.2 93.9 92.6 92.1 92.3 92.7 92.5 94.5 94.2 92.3 91.8 90.1 89.0 88.0
100 300 93.7 93.7 94.1 93.2 93.2 93.2 93.1 95.0 94.6 93.9 92.6 91.6 90.9 91.2
200 100 93.8 89.5 84.7 84.2 83.4 82.8 83.5 93.3 87.9 83.8 79.3 76.7 75.1 73.8
200 200 92.8 91.7 90.6 89.7 90.2 90.1 90.7 94.0 92.0 89.3 88.3 87.3 85.7 84.0
200 300 93.3 93.0 91.7 91.0 91.2 92.0 90.4 94.0 93.6 92.0 91.2 89.8 88.3 88.9
300 100 90.6 85.6 80.8 78.7 78.1 79.0 81.3 92.5 87.5 79.4 73.6 69.7 67.9 67.0
300 200 92.6 90.3 89.8 87.2 87.6 87.1 87.0 93.7 90.0 86.6 84.4 82.2 81.1 79.8
300 300 93.7 93.2 90.6 90.4 89.6 90.0 90.3 94.0 92.5 89.6 88.1 87.1 86.2 85.8

2

100 100 94.1 92.1 90.7 89.8 90.3 91.0 90.4 93.4 92.8 90.9 90.4 90.8 91.3 91.6
100 200 93.4 93.3 93.2 92.0 92.6 92.3 93.1 95.2 93.9 92.7 92.8 93.2 93.6 94.1
100 300 94.4 94.6 94.3 93.8 93.6 92.9 93.1 95.0 94.9 93.8 93.5 93.7 94.5 94.1
200 100 93.1 91.1 87.1 86.8 87.1 87.8 87.2 93.2 92.0 88.9 87.4 88.4 88.6 88.7
200 200 93.8 93.5 91.7 90.8 90.3 90.3 90.7 94.6 94.2 92.1 91.8 91.7 91.2 92.5
200 300 93.3 94.1 93.0 92.1 91.4 92.2 92.1 94.0 93.4 92.5 93.4 93.3 93.2 93.0
300 100 91.4 89.5 82.9 82.0 83.0 82.6 83.6 92.0 89.5 86.0 84.4 84.1 85.7 85.1
300 200 92.7 92.1 88.6 88.3 88.3 89.3 89.8 94.1 93.1 91.0 89.2 89.7 90.2 90.9
300 300 93.9 92.7 90.6 90.9 91.1 91.1 92.0 94.1 92.7 92.1 91.9 92.1 92.1 92.2

Note: Standard errors are computed as in Theorem 2.
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Table S28: GLP Performance (Bias-Corrected)

G0 = 2 G0 = 3

BR (%) RMSE (×100) BR (%) RMSE (×100)
Design N T AC (%) GLP IGLP GLP PAN IND IGLP AC (%) GLP IGLP GLP PAN IND IGLP

1

100 100 84.1 15.8 15.7 29.7 33.6 63.8 10.1 78.4 20.3 19.3 52.7 81.6 77.5 14.9
100 200 92.8 15.0 14.8 18.9 33.0 43.4 6.5 90.2 18.8 18.1 34.3 81.2 52.6 9.5
100 300 96.3 14.7 14.5 13.4 32.8 35.0 5.1 94.9 18.2 17.7 25.0 81.1 42.4 7.5
200 100 84.1 11.2 11.2 29.0 33.2 63.8 8.0 78.3 14.4 13.8 52.2 81.5 77.6 12.0
200 200 92.8 10.6 10.5 18.4 32.8 43.4 4.9 90.2 13.3 12.9 33.8 81.1 52.5 7.2
200 300 96.3 10.4 10.3 13.0 32.7 34.9 3.8 95.0 12.9 12.6 24.3 81.0 42.3 5.5
300 100 84.1 9.2 9.2 28.8 33.2 63.9 7.2 78.3 11.8 11.3 52.1 81.4 77.7 10.8
300 200 92.7 8.7 8.6 18.3 32.8 43.4 4.1 90.0 10.9 10.6 33.9 81.0 52.6 6.3
300 300 96.4 8.5 8.5 12.9 32.7 35.0 3.2 95.1 10.5 10.4 24.1 81.0 42.3 4.8

2

100 100 99.7 15.9 15.7 6.7 22.3 38.5 6.0 99.7 19.5 19.0 9.6 36.8 50.5 8.9
100 200 100.0 15.0 14.8 4.0 22.0 26.2 3.9 100.0 18.3 17.9 6.1 36.5 34.4 6.0
100 300 100.0 14.7 14.5 3.1 21.9 21.1 3.1 100.0 18.0 17.6 4.8 36.4 27.8 4.7
200 100 99.7 11.3 11.2 5.3 22.1 38.5 4.6 99.6 13.8 13.6 7.6 36.6 50.6 6.8
200 200 100.0 10.6 10.5 3.0 21.9 26.2 2.9 100.0 13.0 12.8 4.6 36.4 34.4 4.5
200 300 100.0 10.4 10.3 2.3 21.9 21.1 2.3 100.0 12.7 12.6 3.5 36.3 27.7 3.5
300 100 99.7 9.2 9.2 4.8 22.1 38.5 4.0 99.6 11.3 11.2 6.8 36.5 50.6 6.1
300 200 100.0 8.7 8.6 2.6 21.9 26.2 2.5 100.0 10.6 10.5 3.9 36.4 34.4 3.7
300 300 100.0 8.5 8.5 2.0 21.9 21.1 1.9 100.0 10.4 10.3 3.0 36.3 27.7 2.9

Note: This table reports the classification accuracy (AC), the confidence bands ratios between the GLP and the individual LP-IV (BR), and the RMSE
of the GLP. GLP, PAN, IND and IGLP stand for the GLP, panel LP-IV, individual LP-IV and the infeasible GLP respectively. The infeasible GLP is
group-by-group using standard panel LP-IV where we know the true group structure beforehand. Classification accuracy and band ratios are in per-
centage terms, and RMSE are multiplied by 100.
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Table S29: GLP Coverage Rates (%, Bias-Corrected)

G0 = 2 G0 = 3

Design N T h=0 h=1 h=2 h=3 h=4 h=5 h=6 h=0 h=1 h=2 h=3 h=4 h=5 h=6

1

100 100 92.3 91.2 89.4 86.2 86.5 87.5 88.0 93.7 86.9 87.8 90.8 91.7 93.4 94.3
100 200 94.4 93.7 94.2 93.2 93.2 92.8 93.1 93.7 91.0 91.5 93.0 94.2 95.0 95.4
100 300 95.5 94.0 94.1 94.8 94.2 94.1 93.4 94.2 92.9 93.3 94.2 94.8 95.1 94.8
200 100 90.6 85.4 79.0 75.9 79.0 83.6 85.4 92.8 77.8 79.0 83.2 87.5 89.5 92.9
200 200 93.4 92.4 93.4 92.6 90.3 90.8 90.0 94.0 85.9 87.0 89.3 91.3 93.5 94.5
200 300 93.9 93.3 95.7 93.9 93.9 94.4 93.1 94.7 90.9 91.2 92.6 93.9 94.5 94.0
300 100 91.9 80.9 68.4 67.2 71.6 76.8 81.0 92.2 68.8 68.2 73.9 80.9 86.7 90.4
300 200 94.5 89.7 91.8 88.7 89.2 89.0 88.4 93.9 81.7 82.3 84.4 89.8 92.0 92.9
300 300 93.9 93.4 95.1 93.4 93.1 92.6 91.3 94.5 88.1 89.4 91.9 93.0 94.3 93.7

2

100 100 94.7 92.6 90.6 90.9 90.1 89.0 89.5 94.6 91.8 91.4 92.0 91.9 91.9 91.8
100 200 95.0 93.7 93.2 92.5 91.9 92.4 93.2 94.8 93.8 93.0 92.9 92.7 93.4 93.5
100 300 95.7 94.5 93.7 93.0 93.9 94.3 92.6 94.6 93.8 94.4 94.4 94.4 93.5 94.4
200 100 94.7 92.2 87.5 87.4 86.5 86.2 87.3 93.3 92.0 89.6 90.0 89.1 88.4 89.4
200 200 94.8 92.1 91.5 91.3 91.8 90.4 92.5 94.4 93.0 92.1 92.1 91.8 91.5 91.0
200 300 94.5 93.9 92.2 92.3 92.4 93.2 91.9 94.2 93.3 93.3 93.1 93.3 92.9 93.0
300 100 94.2 89.0 85.5 84.0 84.0 84.5 84.1 94.7 90.3 88.0 87.0 86.4 85.3 86.9
300 200 94.6 91.2 90.4 89.5 89.1 88.2 89.0 95.1 91.8 90.5 90.1 91.2 91.7 90.4
300 300 94.2 92.4 90.4 91.5 90.8 90.8 91.1 94.8 93.4 92.5 92.2 92.2 92.2 92.2

Note: This table reports the coverage probability of the bias-corrected GLP. The coverage rates are computed using large T infer-
ence as in Theorem 2.
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Table S30: GLP Performance: Horizon-by-Horizon Grouping (G0 = 2)

AC (%) BR (%) RMSE (×100)
Design N T BASE HBH BASE HBH IGLP BASE HBH PAN IND IGLP

1

100 100 84.1 64.3 15.9 15.9 15.7 29.6 50.9 33.5 63.9 10.1
100 200 92.7 69.2 15.0 15.0 14.8 18.9 35.7 32.9 43.4 6.4
100 300 96.3 72.2 14.7 14.7 14.5 13.5 28.5 32.8 35.0 5.2
200 100 84.1 63.9 11.2 11.2 11.2 28.9 50.8 33.2 63.8 7.9
200 200 92.7 69.0 10.6 10.6 10.5 18.5 35.5 32.8 43.4 4.9
200 300 96.3 72.1 10.4 10.4 10.3 13.1 28.5 32.7 35.0 3.8
300 100 84.0 63.8 9.2 9.2 9.2 28.8 50.7 33.1 63.8 7.0
300 200 92.6 68.9 8.7 8.7 8.6 18.4 35.5 32.8 43.4 4.2
300 300 96.3 72.0 8.5 8.5 8.5 13.0 28.4 32.7 35.1 3.2

2

100 100 99.7 65.5 15.9 17.0 15.7 6.4 28.7 22.3 38.5 5.9
100 200 100.0 68.1 15.0 16.0 14.8 3.9 20.2 22.0 26.2 3.9
100 300 100.0 69.7 14.7 15.6 14.5 3.1 16.5 21.9 21.1 3.1
200 100 99.7 65.0 11.3 12.1 11.2 5.3 28.6 22.1 38.5 4.5
200 200 100.0 67.6 10.6 11.3 10.5 3.0 20.1 21.9 26.2 2.9
200 300 100.0 69.4 10.4 11.1 10.4 2.3 16.4 21.9 21.1 2.2
300 100 99.7 64.8 9.2 9.9 9.2 4.8 28.6 22.1 38.6 4.0
300 200 100.0 67.5 8.7 9.2 8.6 2.6 20.1 21.9 26.1 2.5
300 300 100.0 69.2 8.5 9.0 8.5 2.0 16.4 21.9 21.1 1.9

Note: This table reports the classification accuracy (AC), the confidence bands ratios between the GLP and the in-
dividual LP-IV (BR), and the RMSE of the GLP. BASE stands for baseline GLP that groups all horizons together,
HBH stands for GLP that groups IRs horizon-by-horizon. PAN, IND and IGLP stand for the panel LP-IV, indi-
vidual LP-IV and the infeasible GLP respectively. Classification accuracy and band ratios are in percentage terms,
and RMSE are multiplied by 100.
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Table S31: GLP Performance: Horizon-by-Horizon Grouping (G0 = 3)

AC (%) BR (%) RMSE (×100)
Design N T BASE HBH BASE HBH IGLP BASE HBH PAN IND IGLP

1

100 100 78.3 60.1 20.3 20.6 19.3 52.8 71.0 81.7 77.6 15.3
100 200 90.2 69.0 18.8 18.9 18.0 34.2 48.2 81.2 52.5 9.5
100 300 95.0 73.8 18.2 18.3 17.6 24.7 37.6 81.1 42.2 7.6
200 100 78.4 59.7 14.4 14.6 13.8 52.1 70.7 81.5 77.6 12.0
200 200 90.3 68.7 13.3 13.4 12.9 33.6 48.1 81.1 52.6 7.1
200 300 95.1 73.6 12.9 13.0 12.6 24.1 37.5 81.0 42.2 5.5
300 100 78.4 59.6 11.8 11.9 11.3 51.8 70.6 81.4 77.5 10.9
300 200 90.3 68.6 10.9 10.9 10.6 33.5 48.0 81.0 52.5 6.2
300 300 95.0 73.4 10.5 10.6 10.4 24.2 37.7 81.0 42.3 4.8

2

100 100 99.6 54.1 19.5 22.0 19.1 9.6 41.6 36.8 50.6 8.9
100 200 100.0 57.0 18.3 20.5 17.9 6.1 29.1 36.5 34.3 6.0
100 300 100.0 59.1 18.0 20.0 17.6 4.8 23.8 36.4 27.8 4.8
200 100 99.6 53.3 13.8 15.6 13.6 7.7 41.3 36.6 50.6 7.0
200 200 100.0 56.4 13.0 14.6 12.8 4.6 29.0 36.4 34.4 4.5
200 300 100.0 58.4 12.7 14.2 12.6 3.5 23.7 36.3 27.8 3.5
300 100 99.6 53.0 11.3 12.8 11.2 6.9 41.2 36.5 50.6 6.1
300 200 100.0 56.1 10.6 11.9 10.5 3.9 29.0 36.3 34.5 3.7
300 300 100.0 58.1 10.4 11.6 10.3 3.0 23.7 36.3 27.8 3.0

Note: This table reports the classification accuracy (AC), the confidence bands ratios between the GLP and the in-
dividual LP-IV (BR), and the RMSE of the GLP. BASE stands for baseline GLP that groups all horizons together,
HBH stands for GLP that groups IRs horizon-by-horizon. PAN, IND and IGLP stand for the panel LP-IV, indi-
vidual LP-IV and the infeasible GLP respectively. Classification accuracy and band ratios are in percentage terms,
and RMSE are multiplied by 100.
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Table S32: Differences in Coverage Rates (%, HBH-BASE)

G0 = 2 G0 = 3

Design N T h=0 h=1 h=2 h=3 h=4 h=5 h=6 h=0 h=1 h=2 h=3 h=4 h=5 h=6

1

100 100 -83.4 -6.2 -29.0 -71.6 -86.3 -88.6 -89.8 -79.5 1.0 -0.9 -22.7 -49.8 -60.8 -64.2
100 200 -85.7 1.5 -6.3 -45.8 -89.1 -92.7 -92.9 -80.3 4.1 1.2 -17.1 -51.3 -64.4 -67.2
100 300 -85.6 0.5 -2.2 -20.1 -79.6 -93.6 -93.8 -81.7 3.1 0.9 -10.9 -41.9 -61.1 -65.2
200 100 -86.5 -18.2 -56.4 -77.2 -80.8 -84.6 -86.1 -81.3 -2.4 -6.7 -49.2 -68.3 -75.8 -80.7
200 200 -89.6 -1.3 -17.5 -80.3 -90.9 -90.8 -90.5 -84.5 3.4 2.2 -39.2 -64.6 -70.3 -76.1
200 300 -91.9 1.9 -4.8 -56.1 -93.2 -92.9 -93.8 -85.0 3.4 0.4 -29.1 -61.3 -65.6 -68.3
300 100 -86.5 -27.5 -61.2 -67.6 -72.4 -79.3 -82.7 -81.3 -5.3 -12.5 -58.2 -71.4 -79.5 -85.9
300 200 -90.0 0.0 -27.6 -87.8 -89.6 -89.1 -89.5 -85.5 5.5 -1.9 -52.4 -66.7 -73.3 -81.3
300 300 -92.8 0.5 -9.3 -78.7 -92.4 -93.4 -91.7 -85.2 3.6 -1.2 -38.7 -63.7 -68.1 -73.2

2

100 100 0.2 -37.0 -90.4 -90.5 -91.7 -90.6 -89.5 0.2 -22.8 -63.8 -60.1 -58.9 -59.5 -63.0
100 200 0.0 -11.7 -83.8 -92.1 -92.7 -93.0 -93.1 -0.1 -12.6 -52.5 -65.2 -61.2 -61.2 -61.1
100 300 0.0 -7.9 -65.1 -92.3 -93.4 -93.6 -93.1 -0.1 -9.0 -38.7 -68.1 -61.9 -60.6 -61.9
200 100 -0.1 -72.1 -89.9 -86.8 -88.6 -86.5 -88.2 0.2 -36.1 -59.3 -60.2 -55.7 -55.6 -56.9
200 200 0.0 -27.4 -92.6 -90.4 -91.2 -92.1 -91.3 0.0 -23.8 -58.1 -66.4 -61.1 -58.7 -58.7
200 300 -0.1 -19.6 -91.0 -92.1 -92.3 -91.9 -92.5 0.2 -19.9 -53.8 -64.4 -67.8 -60.2 -59.9
300 100 -0.2 -83.6 -85.4 -84.5 -84.0 -83.9 -85.1 0.1 -42.2 -54.7 -61.6 -53.3 -54.0 -53.7
300 200 -0.1 -40.6 -90.3 -89.3 -88.9 -89.1 -89.6 0.0 -25.6 -58.0 -64.6 -64.4 -57.7 -57.4
300 300 0.1 -26.8 -91.1 -90.4 -90.9 -91.7 -91.8 0.1 -24.7 -57.7 -61.7 -70.1 -60.5 -58.9

Note: This table reports the differences in coverage probabilities of the horizon-by-horizon GLP and the baseline GLP. Confidence intervals
are computed using Theorem 2.
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Table S33: Explaining Group Membership (Ĝ = 3)

(1) (2) (3) (4) (5)
2
RGDP -0.986 -1.667

(-1.30) (-1.33)
Employment -0.366∗

(-2.21)
Debt -1.971∗∗∗ -2.007∗∗ -2.436∗∗∗

(-4.41) (-3.15) (-3.30)
Elasticity 0.777 0.479

(1.88) (1.15)
3
RGDP -2.386∗∗ -3.214∗

(-2.97) (-2.46)
Employment -0.425∗

(-2.50)
Debt -1.539∗∗∗ -1.623∗ -2.441∗∗

(-3.47) (-2.56) (-3.25)
Elasticity 0.796 0.414

(1.93) (0.99)
N 382 382 381 253 253
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

The coefficients for constant terms are omitted.
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Table S34: Explaining Group Membership (Ĝ = 4)

(1) (2) (3) (4) (5)
2
RGDP -0.687 -1.720

(-0.85) (-1.32)
Employment -0.297

(-1.67)
Debt -1.715∗∗∗ -1.890∗∗ -2.344∗∗

(-3.63) (-2.86) (-3.06)
Elasticity 0.445 0.154

(1.03) (0.35)
3
RGDP -1.488 -2.113

(-1.91) (-1.62)
Employment -0.427∗

(-2.52)
Debt -1.941∗∗∗ -1.784∗∗ -2.342∗∗

(-4.31) (-2.75) (-3.10)
Elasticity 0.998∗ 0.664

(2.36) (1.57)
4
RGDP -2.579∗∗ -3.784∗∗

(-3.06) (-2.75)
Employment -0.422∗

(-2.36)
Debt -1.549∗∗∗ -1.787∗∗ -2.772∗∗∗

(-3.37) (-2.68) (-3.50)
Elasticity 0.829 0.410

(1.95) (0.95)
N 382 382 381 253 253
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

The coefficients for constant terms are omitted.

105



Table S35: MSA Group Economic Profile (FE’)

GDP Income Population Employment Regulation Elasticity Debt (Low) Debt (High)

Ĝ g count mean std mean std mean std mean std mean std mean std mean std mean std

2
1 81 52091 21252 48206 13569 932 1864 581 1212 0.230 0.996 2.092 1.010 1.523 0.491 1.682 0.478
2 301 45678 11313 45301 8752 676 1564 418 1019 -0.215 0.749 2.725 1.516 1.403 0.480 1.562 0.447

3
1 31 54014 20465 48827 13319 1327 2479 800 1592 0.429 0.929 1.747 0.985 1.720 0.458 1.826 0.448
2 181 48592 15244 46558 9694 688 1816 434 1186 -0.176 0.865 2.750 1.634 1.337 0.498 1.503 0.435
3 170 44112 10702 44704 9554 666 1158 409 759 -0.165 0.735 2.584 1.263 1.472 0.449 1.637 0.459

4

1 12 56275 10566 51268 8833 2029 3717 1292 2428 0.466 0.525 1.232 0.893 1.899 0.431 2.064 0.470
2 157 49273 17550 47505 12012 774 1943 480 1260 0.022 0.918 2.374 1.169 1.444 0.501 1.585 0.449
3 110 46300 10642 45030 7990 648 1092 409 742 -0.252 0.762 2.813 1.705 1.398 0.433 1.582 0.453
4 103 43343 10960 43820 8070 599 1095 359 688 -0.236 0.724 2.780 1.452 1.382 0.492 1.548 0.445

Note: GDP and income are per capita measured in dollars. Population and employment are measured in thousands of person and thousands of jobs respectively.
Regulation stands for the Wharton residential land use regulatory index, and Elasticity is the house supply elasticity. Debt (Low) and Debt (High) correspond to
the lower bound and upper bound of the debt to income ratio.
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Table S36: MSA Group Economic Profile (Horizon-by-Horizon)

GDP Income Population Employment Regulation Elasticity Debt (Low) Debt (High)
H g count mean std mean std mean std mean std mean std mean std mean std mean std

1
1 88 48936 15843 47241 10238 1040 2613 644 1703 0.272 0.760 1.971 0.814 1.562 0.501 1.724 0.487
2 168 48399 15056 46585 10848 611 1176 381 751 -0.291 0.831 2.881 1.685 1.326 0.438 1.498 0.413
3 126 43898 11168 44101 8405 673 1201 415 799 -0.177 0.784 2.651 1.344 1.473 0.506 1.617 0.465

6
1 30 52836 21679 48810 13915 1449 2591 888 1692 0.460 0.579 1.619 0.884 1.784 0.448 1.916 0.457
2 244 47653 13691 45884 9203 768 1743 483 1136 -0.166 0.829 2.666 1.413 1.347 0.438 1.509 0.406
3 108 44039 12190 45188 10476 445 743 264 474 -0.181 0.824 2.690 1.558 1.512 0.537 1.686 0.508

12
1 42 53631 18970 49158 12791 1202 2251 743 1470 0.443 0.838 1.741 0.886 1.683 0.494 1.850 0.491
2 240 47948 13953 46127 9992 733 1704 461 1112 -0.216 0.807 2.687 1.430 1.349 0.428 1.519 0.407
3 100 42085 10726 44052 8335 525 1012 311 643 -0.122 0.779 2.717 1.576 1.510 0.556 1.652 0.510

18
1 20 53007 24374 48565 14018 1592 2968 948 1912 0.260 0.631 1.836 1.043 1.777 0.485 1.882 0.482
2 90 49726 14294 47234 10539 955 2312 605 1512 0.171 0.833 1.963 0.814 1.449 0.469 1.611 0.444
3 272 45710 13005 45286 9455 592 1135 366 740 -0.248 0.808 2.859 1.550 1.396 0.481 1.560 0.452

24
1 46 51229 19036 47611 12017 1173 2227 716 1444 0.453 0.821 1.825 0.932 1.640 0.560 1.757 0.500
2 185 47221 11778 46084 9129 752 1840 472 1205 -0.215 0.810 2.656 1.489 1.405 0.459 1.584 0.462
3 151 45537 15091 45195 10392 568 1024 349 658 -0.178 0.780 2.758 1.454 1.392 0.477 1.544 0.425
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Figure S1: Information Criterion

Figure S2: Group Impulse Responses (Ĝ = 2)
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Figure S3: Group Impulse Responses (Ĝ = 4)

Figure S4: Geographical Distribution (Ĝ = 4, FE))
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Figure S5: Information Criterion (FE’)

Figure S6: Impulse Responses (Ĝ = 2, FE’)
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Figure S7: Impulse Responses (Ĝ = 3, FE’)
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Figure S8: Impulse Responses (Ĝ = 4, FE’)

Figure S9: Geographical Distribution (Ĝ = 3, FE’)
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Figure S10: Geographical Distribution (Ĝ = 4, FE’)

Figure S11: Alternative Criterion (Ĝ = 3, FE’)

(a) The Richest 10% MSAs (b) The Poorest 10% MSAs in Group 1
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Figure S12: Impulse Responses (Horizon-by-Horizon)
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Figure S13: House Prices Impulse Responses (Charleston, WV)

(a) Individual LP-IV (b) Horizon-by-Horizon GLP

(c) Baseline GLP

Note: All IRs are measured in percentage and correspond to a one percentage increase in the FFR. The
shaded areas indicate 95% confidence bands.
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Figure S14: Impulse Responses (HBH, h = 1)

Figure S15: Impulse Responses (HBH, h = 6)
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Figure S16: Impulse Responses (HBH, h = 12)

Figure S17: Impulse Responses (HBH, h = 18)
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Figure S18: Impulse Responses (HBH, h = 24)
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