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Abstract

This paper considers the estimation of heterogeneous impulse responses in large pan-

els. I introduce an efficient data-driven clustering methodology for grouping heteroge-

neous responses within the local projection-IV framework. The proposed group local

projection (GLP) estimator consistently recovers the latent group structure and the

group-specific impulse responses when the panel dimensions increase. Simulation ev-

idence illustrates the reliable finite sample performance of the estimator even under

misspecification of the group structure. With the GLP estimator I revisit the debate

on the effects of monetary policy shocks on house prices and document significant price

appreciation after a contractionary shock in an economically large cluster of MSAs in

the US. Importantly, this cluster is ignored by conventional grouping criteria.
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1 Introduction

Individual entities, being households, firms, or regions, typically respond differently to eco-

nomic shocks. Empirical studies where heterogeneous responses—in terms of signs, magni-

tudes, and persistence—have been documented include the effects of fiscal shocks (Beetsma

and Giuliodori, 2011; Cloyne and Surico, 2017), monetary shocks (Ottonello and Winberry,

2020; Cloyne, Ferreira and Surico, 2020), and income shocks (Arellano, Blundell and Bon-

homme, 2017; Baker, 2018), among many others. The documented heterogeneity is crucial

for understanding the transmission channels and distinguishing macroeconomic models (Ka-

plan and Violante, 2018). Consistently capturing the heterogeneity among the responses is

thus of utmost importance.

There are two popular approaches to capturing the heterogeneity in panel data mod-

els. The first approach allows for unit-specific coefficients (e.g., Pesaran and Smith, 1995).

However, this comes with a significant efficiency loss and wide confidence bands—notably

in studies with limited time series observations—implying that policy recommendations are

difficult to determine (e.g., Schmitt-Grohé and Uribe, 2018). The second approach defines

a priori criteria to classify entities with grouped coefficients (Cloyne, Ferreira and Surico,

2020; Ando and Bai, 2015; Bester and Hansen, 2016), which faces the distinct downside that

important heterogeneity may be missed or incorrectly attributed to the assigned variable in

the case of endogenous assignment. Consequently, many studies simply concentrate on the

average responses and ignore potential heterogeneity (e.g., Arezki, Ramey and Sheng, 2017;

Acemoglu et al., 2019).

This paper proposes a data-driven methodology that strikes a balance between unit-

specific and common impulse responses (hereafter IRs). Within the panel local projection

instrumental variable (LP-IV) framework (Jordà, Schularick and Taylor, 2015), I develop a

group local projection (GLP) estimator that recovers heterogeneous IRs by grouping individ-

ual responses using clustering methods. Specifically, the GLP iterates between estimating

IRs and updating group membership to find the optimal group partitioning and IR esti-
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mates. Under the assumption of strong instruments, I show that the GLP consistently

recovers the latent group structure and the group-specific IRs. Moreover, I show that it

allows for standard inference on the IRs when the panel dimensions become large.

An important tuning parameter for all clustering methods is the choice of the number

of groups. Within the GLP framework, I propose an information criterion in the spirit

of Bai and Ng (2002) that consistently selects the number of groups. Besides, I find the

distinctiveness of the IR estimates a practically useful qualitative indicator (Theodoridis

and Koutroumbas, 2009, Chapter 16).

Simulating data from a dynamic panel data model, I show that the GLP estimator

performs satisfactorily in finite samples in terms of the classification accuracy, the length of

the confidence bands, and the root mean squared error. Moreover, the proposed information

criterion correctly selects the group number as the sample size increases, and throughout, the

estimation errors associated with the wrong group number remain moderate. Interestingly,

even when the true IRs do not admit a group structure, the GLP estimates are often more

precise than unit-specific and common IR estimates.

With the GLP estimator in hand, I revisit the literature on the responses of house prices

to monetary policy shocks. The existing literature has predominantly focused on estimating

aggregate effects at the country level (Jarociński and Smets, 2008; Iacoviello and Neri, 2010;

Jordà, Schularick and Taylor, 2015). Some have considered imposing a pre-defined group

structure on the disaggregated data (e.g., Del Negro and Otrok, 2007). The conventional

finding is that house prices decrease following contractionary monetary shocks. However, I

show that this result is largely driven by the inability of existing methods to identify the

latent groups correctly.

Specifically, I consider a large panel of 382 MSAs from 1991:1 to 2007:12 in the US.

The monetary shocks are identified by using as instruments the high frequency market sur-

prises that are robust to the Fed’s information effect (Miranda-Agrippino and Ricco, 2021).

The GLP procedure detects three latent groups of housing responses, among which an eco-
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nomically large cluster—6.3% of MSAs accounting for 13.1% of total personal income in our

sample—experiences housing booms after an unexpected interest rate hike. In stark contrast,

41.4% of MSAs, which account for only 29% of total personal income, suffer from housing

busts of a similar scale. Hence, curbing house prices through monetary policy is problematic

given the indeterminate IRs (Galí and Gambetti, 2015). Moreover, conventional grouping

criteria fail to recover the documented patterns due to rich within-group heterogeneity, e.g.,

in terms of income and location.

The remainder of this paper is organized as follows. I continue this introduction by

carefully relating the group local projection estimator to the existing literature. Section 2

describes the local projection model and establishes the notation for grouping. Section 3

introduces the GLP estimator for which the asymptotic properties are developed in Section

4. Section 5 discusses the criteria for determining the number of groups. Section 6 reports

simulation results and Section 7 presents the empirical application. Section 8 concludes. All

proofs as well as additional simulation and empirical results are relegated to the Supplemental

Material.

Relation to the literature

The GLP builds on a large literature on clustering latent group structures in panel data. This

paper is closest to Lin and Ng (2012) and Sarafidis and Weber (2015) who estimate grouped

regression coefficients using K-means clustering. The GLP complements these papers by (a)

extending their analysis to allow for endogenous variables and (b) developing an inference

theory for the proposed GLP estimator.

Further, to address the incidental parameter problem, Bonhomme and Manresa (2015)

and Bonhomme, Lamadon and Manresa (2022) propose to use K-means clustering to group

fixed effects. They derive the asymptotic properties under strict exogeneity. The GLP

extends their framework to allow for the clustering of heterogeneous coefficients of multiple

endogenous variables in a GMM framework. This extension is crucial for macroeconomic
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studies that commonly use local projection-IV methods, as the variables of interest are,

almost exclusively, endogenously determined in these settings (Stock and Watson, 2018).

Moreover, the GMM objective function provides a flexible way to weigh information across

different moment restrictions, which is particularly useful for grouping impulse responses

that are known to be noisier at large horizons (Barnichon and Brownlees, 2019).1

Alternative methods for grouping heterogeneous IRs include the class of dynamic factor

models and vector autoregressive models; see Stock and Watson (2016) for a recent review.

Prominent examples are FAVAR (Boivin, Giannoni and Mihov, 2009), Panel VAR (Canova,

Ciccarelli and Ortega, 2012), and Global VAR (Dees et al., 2007). However, these models can

lead to misleading results because of the parametric restrictions required to reduce the VAR

dimension. In particular, I show in the empirical application that FAVAR cannot recover

the positive IRs or the group patterns revealed by the GLP since the panel of house prices

has no strong factor structure. To capture enough variations in the data, the number of

factors would be so large that the resulting VAR entails large estimation uncertainty due to

the curse of dimensionality.

In this paper, I extend the K-means clustering approach to the local projection literature

following Lin and Ng (2012) and Bonhomme and Manresa (2015). Alternatively, one could

consider extending penalized regression methods such as the C-LASSO procedure proposed

by Su, Shi and Phillips (2016) and the panel-CARDS approach of Wang, Phillips and Su

(2018), to group impulse responses. The GLP procedure has several advantages. First, the

GLP admits analytical solutions and can be implemented with a simple iterative algorithm,

yielding computational efficiency. Second, the GLP requires only a single parameter input,

i.e., the number of groups, for which both statistical and economic criteria are available.2

1More distantly related are studies that use predetermined criteria to group coefficients
(e.g., Ando and Bai, 2015; Bester and Hansen, 2016; Cloyne, Ferreira and Surico, 2020).

2In contrast, LASSO-type estimators involve two hyperparameters to (i) shrink the IRs
and (ii) determine the number of groups. A common practice is to choose the tuning param-
eters based on cross-validation. However, it is difficult to construct training/test samples for
clustering tasks (Theodoridis and Koutroumbas, 2009).
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2 Local projections and grouping

In this section, I introduce the panel local projection model and show how a group structure

can be imposed on the impulse responses. To this extent, let yt be the N -dimensional vector

of outcome variables, with the ith element denoted by yi,t, for i = 1, . . . , N . The h-period

ahead predictions for yi,t are modeled by local projections (e.g., Jordà, 2005). Specifically, I

postulate that

yi,t+h = w′
i,tαi,h + ϵi,t+h , h = 0, . . . , H , (1)

where wi,t is the K × 1 vector of possibly endogenous variables whose influence is measured

by the impulse responses {αi,h}Hh=0, and ϵi,t+h is the error term. The parameters αi,h are

allowed to vary across entities i and horizons h. To estimate αi,h I assume that there exists

an L× 1 vector of instruments zi,t with L ≥ K. Popular examples of model (1) include the

estimation of the effects of monetary policy to firm investment (Ottonello and Winberry,

2020), where yi,t+h is the h-period ahead investment growth of firm i, and monetary shocks

are identified by instrumenting the federal funds rate by high-frequency monetary surprises

(e.g., Gürkaynak, Sack and Swanson, 2005; Miranda-Agrippino and Ricco, 2021).

In principle, we can estimate model (1) equation-by-equation (e.g., for each i and h) using

instrumental variable methods (hereafter, individual LP-IV). However, when the time series

dimension is modest, this approach typically leads to large confidence bounds for {αi,h}Hh=0,

which makes policy recommendations difficult. Specifically, in most macro studies the total

number of periods T will be around a few hundred (e.g., Jordà, Schularick and Taylor, 2015).

In many applications, it is often reasonable to assume some commonality across the

responses of individual entities. To this extent, I partition wi,t = (x′
i,t, c

′
i,t)

′ and assume

that the impulse responses to the variables of interest xi,t can be summarized by G distinct

groups, such that the individuals within the same group share the same impulse responses.3

3In principle, the model could be adjusted to allow group membership to vary across the
horizons of the impulse responses. Doing so nevertheless generates irregular IR shapes that
are difficult to be reconciled with existing macroeconomic theories (e.g., Woodford, 2003).

6



Note that both xi,t and ci,t may include exogenous and endogenous variables.

Formally, let gi ∈ {1, . . . , G} denote the group membership of individual i and βgi,h

the group impulse responses. The group partition is summarized by an N × 1 vector γ =

(g1, . . . , gN)
′ ∈ G, where G is the set of all possible partitions. The group local projection

model is then given by

yi,t+h = x′
i,tβgi,h + c′i,tϕi,h + ϵi,t+h , h = 0, . . . , H , (2)

which is identical to the standard local projection model (1) except that for the subset of

variables xi,t the impulse responses of interest are grouped. When G = N , assuming groups

are non-empty, the models are identical. Note that the setup is general since researchers

are free to specify variables in xi,t whose responses are grouped, and place the remaining

variables in ci,t whose responses may or may not follow a group structure.

The goal is to develop a method that consistently recovers the group partition γ and the

group-specific impulse responses {βgi,h}.

3 The Group Local Projection estimator

This section introduces the group local projection (GLP) estimator. I start by defining some

convenient notation. Let βgi,h ∈ Θ and ϕi,h ∈ Φ be group- and individual-level impulse

responses at horizon h. Denote the collection of parameters as βgi = (β′
gi,0

, . . . , β ′
gi,H

)′,

β = (β1, . . . , βG), ϕi = (ϕi,0, . . . , ϕi,H)
′ and ϕ = (ϕ1, . . . , ϕN). The corresponding parameter

space is written compactly as β ∈ ΘG and ϕ ∈ ΦN . I define the set of entities in group j as

Sj = {i | gi = j}, with the group size given by the cardinality Nj = |Sj|. Unless otherwise

noted, ∥·∥ denotes the Euclidean norm, i.e., ∥X∥2 = tr(XX ′) for a matrix or vector X.

Finally, two collections of parameters β̃ = (β̃1, . . . , β̃G1) and β = (β1, . . . , βG2) with possibly
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different G1 and G2, define the Hausdorff distance between them as

dH(β, β̃) = max

{
max

g∈{1,...,G2}
min

g̃∈{1,...,G1}
∥β̃g̃ − βg∥, max

g̃∈{1,...,G1}
min

g∈{1,...,G2}
∥β̃g̃ − βg∥

}
. (3)

The GLP estimator aims to consistently recover the underlying group structure γ and the

impulse response matrix β. The individual-specific impulse responses ϕ are not of explicit

interest. Formally, I define the GLP estimator as

{β̂, ϕ̂, γ̂} = argmin
β∈ΘG,ϕ∈ΦN ,γ∈G

Q̂NT (β,ϕ, γ) , (4)

where the objective function Q̂NT (β,ϕ, γ) is

Q̂NT (β,ϕ, γ) =
1

N

N∑
i=1

H∑
h=0

Q̂iTh(βgi,h, ϕi,h), Q̂iTh(βgi,h, ϕi,h) = m̂′
i,hΩ̂i,hm̂i,h, (5)

with m̂i,h = 1
T

∑T
t=1 zi,t(yi,t+h − x′

i,tβgi,h − c′i,tϕi,h) and Ω̂i,h some L× L weighting matrix.

The GLP estimator is based on the minimization of the multiple-equation GMM ob-

jective function (5). Besides being able to handle endogenous variables, this also allows

incorporating different weights for different units i and horizons h through Ω̂i,h, which is

particularly relevant in the local projection setup where the estimation errors tend to in-

crease for longer horizons. In practice, we can set Ω̂i,h = V̂ −1
i,h where V̂i,h is the Newey and

West (1987) variance estimate of m̂i,h with H + 1 lags, i.e.,

V̂i,h =
T∑
t=1

e2i,t+hzi,tz
′
i,t +

H+1∑
l=1

(1− l

H + 2
)

T∑
t=l+1

ei,t+hei,t+h−l(zi,tz
′
i,t−l + zi,t−lz

′
i,t) (6)

with ei,t+h = yi,t+h − w′
i,tα̂i,h the residuals from individual LP-IV regressions. The perfor-

mance of various weighting matrices can be found in Supplementary Material S2.3.

Note also that the estimator defined in (4) is by construction different from the conven-

tional panel GMM estimator (e.g., Hayashi, 2000, Chapter 4). In particular, the resulting
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estimator is subject to the incidental parameter bias (due to the presence of ϕi,h) even when

the latent groups γ are known and N/T → κ ∈ [0,∞); see Fernández-Val and Lee (2013)

and Su, Shi and Phillips (2016) for detailed discussions on the bias. The advantage of for-

mulation (5) is that the minimization problem can be solved by an iterative procedure in

the spirit of the K-means algorithm, whereas alternative specifications can only be solved

simultaneously with respect to (β,ϕ, γ); see e.g., Ramaswamy et al. (1993).

In particular, we can minimize (4) by iterating between two steps: (i) solving the group

assignment problem and (ii) solving the IR estimation problem. The estimation procedure

is summarized in the following algorithm.

Algorithm: Group Local Projection

1. Initialization: Obtain an initial guess for the IRs, β̂(0)
= (β̂

(0)
1 , . . . , β̂

(0)
G ) and ϕ̂

(0)
=

(ϕ̂
(0)
1 , . . . , ϕ̂

(0)
N ) ;

2. Assignment: Given β̂
(r) and ϕ̂

(r), solve

ĝ
(r+1)
i (β̂

(r)
, ϕ̂

(r)
) = argmin

gi∈{1,...,G}

H∑
h=0

Q̂iTh

(
β̂
(r)
gi,h

, ϕ̂
(r)
i,h

)
; (7)

3. Coefficient updating: Given the group partition γ̂(r) = (ĝ
(r)
1 , . . . , ĝ

(r)
N ), solve

{
β̂

(r+1)
, ϕ̂

(r+1)
}
= argmin

β∈ΘG,ϕ∈ΦN

Q̂NT (β,ϕ, γ̂
(r)) ; (8)

4. Convergence: If dif(r) ≤ ϵtol stop, where

dif(r) = max

{∣∣∣Q̂NT (β̂
(r+1)

, ϕ̂
(r+1)

, γ̂(r+1))− Q̂NT (β̂
(r)
, ϕ̂

(r)
, γ̂(r))

∣∣∣ , ∥β̂(r+1) − β̂
(r)∥

∥β̂(r)∥+ 0.001

}
,

else set r = r + 1 and go to Step 2.

Overall, the GLP algorithm generalizes the conditional K-means clustering algorithm of Lin

and Ng (2012), where the main novelty is the GMM objective function.
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Step 1 initializes the algorithm. In practice, it is recommended to use a number of differ-

ent initial starting matrices β̂
(0) by randomly drawing G entities (out of N) and computing

IRs for each entity using individual LP-IV. Moreover, we fix ϕ̂
(0)

= (ϕ̂1, . . . , ϕ̂N) where ϕ̂i

is the individual LP-IV estimates for unit i. In simulations, I find that using 50 random

initializations works well.4

Given the initial guess β̂
(0) and ϕ̂

(0), the GLP iterates between steps 2 and 3 until

convergence. For the assignment step 2, I evaluate the individual objective function for

i = 1, . . . , N at each group coefficient, i.e., obtaining Q̂iTh

(
β̂
(r)
1,h, ϕ̂

(r)
i,h

)
, . . . , Q̂iTh

(
β̂
(r)
G,h, ϕ̂

(r)
i,h

)
,

and I assign unit i to group j such that
∑

h Q̂iTh

(
β̂
(r)
j,h , ϕ̂

(r)
i,h

)
is the minimum.

The coefficient updating step 3 can be carried out in closed form. A simple calculation

shows that for all j = 1, . . . , G and h = 0, . . . , H

β̂
(r+1)
j,h =

∑
i∈Ŝ(r)

j

d
′
zx,iM zc,i,hdzx,i


−1∑

i∈Ŝ(r)
j

d
′
zx,iM zc,i,hdzy,i,h

 , (9)

and for all i = 1, . . . , N

ϕ̂
(r+1)
i,h =

(
d
′
zc,iΩ̂i,hdzc,i

)−1

d
′
zc,iΩ̂i,h

(
dzy,i,h − dzx,iβ̂

(r+1)
ĝi,h

)
, (10)

where d̄zx,i =
1
T

∑T
t=1 zi,tx

′
i,t, d̄zc,i = 1

T

∑T
t=1 zi,tc

′
i,t, dzy,i,h = 1

T

∑T
t=1 zi,tyi,t+h and M zc,i,h =

Ω̂i,h − Ω̂i,hd̄zc,i(d̄
′
zc,iΩ̂i,hd̄zc,i)

−1d̄′zc,iΩ̂i,h. The closed-form solutions in (9) and (10) make the

GLP attractive from a computational viewpoint.

Finally, step 4 assesses whether the algorithm has converged. The convergence criterion

dif(r) is borrowed directly from Su, Shi and Phillips (2016) and I use ϵtol = 10−6 as a tolerance

level in practice. Simulation shows little variation across different stopping rules.

To sum up, the GLP estimator can be easily implemented using existing tools. The

procedure is computationally efficient because the assignment step amounts to simply eval-
4For more discussion on K-means initialization see Maitra, Peterson and Ghosh (2010) for

an excellent overview.
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uating GMM objective functions and the coefficient updating step can be solved in closed

form. An implicit hyperparameter in the above algorithm is the number of groups G, which

is discussed in greater detail in Section 5.

4 Asymptotic theory

This section develops the asymptotic properties of the GLP estimator when the cross-section

and the time series dimensions become large. First, I discuss the conditions under which the

latent group structure γ and the impulse responses β are consistently estimated. Second,

I derive the limiting distribution of the impulse responses for large N and T . Throughout,

the true group membership of individual i is denoted by g0i , the true number of groups by

G0, and the true impulse responses by β0.

4.1 Consistency

I begin by laying out the assumptions needed for consistency.

Assumption 1 (GMM).

A. The parameter space Θ and Φ are compact.

B. For all i, {(yi,t, w′
i,t, z

′
i,t)

′ : 1 ⩽ t ⩽ T} is a strictly stationary α-mixing sequence of

random vectors with mixing coefficients ai(·) such that a(·) = maxi ai(·) satisfies a(τ) ⩽

exp (−c1τ
c2) where c1, c2 are positive constants.

C. For each i and h, there exists some c3, c4 > 0 such that for each element x of {(zi,tw′
i,t, zitϵi,t+h)},

we have P(|x− E[x]| > v) ⩽ exp (1− (v/c3)
c4).

D. For all i, t, E[zi,tw′
i,t] has full column rank and E|zi,t,jwi,t,k|4(1+δ) < ∞ for j = 1, . . . , L

and k = 1, . . . , K and some δ > 0.
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E. For all i, t and h, E[zi,tϵi,t+h] = 0 and E|zi,t,jϵi,t+h|4(1+δ) < ∞ for j = 1, . . . , L and

some δ > 0.

F. For all h, there exists a deterministic sequence of symmetric positive definite matrices

{Ωi,h}Ni=1 such that for any ν > 0, we have P(∥Ω̂i,h−Ωi,h∥ ≥ ν) = o(T−δ) for all δ > 0.

G. The maximal horizon H is finite.

Assumptions 1.A-1.F define a set of primitive conditions for the consistency of the GMM

estimator (e.g., White, 2001, Chapter 3). Specifically, part 1.B assumes stationary strong

mixing for each individual time series. Since we allow for individual-level parameters ϕi,h,

I follow Hahn and Kuersteiner (2011) and assume that ϕi,h are nonrandom, and the data

are strong mixing conditional on their realization. Together with the tail probability con-

dition 1.C, the exponential decay rate facilitates the use of Bernstein-type inequalities (e.g.

Rio, 2017, Chapter 6). It is easy to extend the analysis with a slower decay rate at the cost

of stronger moment bounds (e.g., Cheng, Schorfheide and Shao, 2019).

Parts 1.D and 1.E impose standard assumptions on the instrumental variables, relevance

and exogeneity, and require the existence of 4(1+ δ) moments for the products zi,t,jwi,t,k and

zi,t,jϵi,t+h. Assumption 1.F allows for flexible weighting across units and horizons, which is

crucial in the current setup as IRs are uninformative and noisy for longer horizons. Combined

with The rate condition can be relaxed to uniform convergence P(supi ∥Ω̂i,h − Ωi,h∥ ≥ ν) =

o(1), at the cost of slower convergence of the misclassification error5. The final condition

1.G assumes that the maximal horizon of the impulse responses is finite, which is justified

for most of the applications in macroeconomics where the responses converge to zero in the

long run.

Intuitively, Assumption 1 ensures that the estimated group impulse responses converge

in probability to a well-defined limit given any group partition γ. In the current setup,
5It is easy to verify that the uniform convergence of the objective function Q̂NT to its population coun-

terpart is determined by supi ∥dzw,i − dzw,i∥, supi ∥dzϵ,i,h∥ and supi ∥Ω̂i,h −Ωi,h∥, which in turn determines
the convergence of misclassification errors; see (124) in the Supplemental Material.
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this assumption is insufficient as the latent group structure is unknown, and so additional

assumptions are needed to infer the group membership. First we specify the latent group

structure as follows.

Assumption 2 (Group Structure).

A. For all j = 1, . . . , G0, plimN→∞
1
N

∑N
i=1 1{g0i = j} = πj > 0.

B. For all j ̸= k,
∑H

h=0 ∥β0
j,h − β0

k,h∥ > 0.

C. The true number of groups G0 is finite and known.

Here part 2.A requires the group size to increase as N goes to infinity, which rules out

the possibility of outliers that could have a nontrivial impact on the estimation. Part 2.B

imposes that the true impulse responses of different groups are separable, and part 2.C

requires that the number of groups is finite and known. Section 5 proposes an information

criterion that consistently selects G0. Extensions to the case where G0 varies, e.g., across

time and sample sizes, are left for future research.

Taken together, Assumptions 1-2 are comparable to Assumptions 1-2 in Bonhomme and

Manresa (2015), but with the important difference that they pertain to a multiple-equation

setting where the explanatory variables can be endogenous and valid instruments are avail-

able for inference. The following theorem summarizes the consistency of the GLP.

Theorem 1 (Consistency). Under Assumptions 1-2, as N, T → ∞, we have for all δ > 0

P

(
sup

i∈{1,...,N}
| ĝi − g0i |> 0

)
= o(1) + o(NT−δ) (11)

β̂j − β̃j = op(NT−δ), j = 1, . . . , G0 . (12)

where β̃ is the infeasible estimator defined by (β̃, ϕ̃) = argmin
β,ϕ

Q̂NT (β,ϕ, γ
0).

Theorem 1 contains two parts. The first part provides an upper bound of misclassifi-

cation errors. The bound contains two parts. The first part is determined by P(β /∈ Nη),
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the probability that β lies outside some neighborhood of the true parameters measured by

Hausdorff distance; the second part is the misclassification probabilities given that β ∈ Nη.

The second part states that the GLP estimator is asymptotically equivalent to the infea-

sible estimator with known group structure. Our convergence rate is slower than the op(T
−δ)

in Bonhomme and Manresa (2015), because we allow for a large vector of nuisance param-

eter ϕ. Moreover, due to the presence of ϕ, even the infeasible estimator is asymptotically

biased, as next section shows. To avoid the bias, Su, Shi and Phillips (2016) proposes a

“post-lasso” estimator where conditional on estimated groups we can use the fully-pooled

GMM objective function. However, doing so implicitly assumes that all parameters in ϕ are

grouped and with identical grouping structure, which is unlikely to hold in practice.

4.2 Asymptotic normality

Theorem 1 indicates that as T goes to infinity, the probability of misclassification converges

to zero. To derive asymptotic distribution under this case, I impose the following assumption:

Assumption 3.

A. For all i, {(yi,t, wi,t, zi,t)} are independent and identically distributed across i.

B. For each j = 1, . . . , G0, we have Nj/T → κj ∈ [0,∞) as N and T go to infinity.

Assumption 3 contains two parts. First, part 3.A imposes cross-sectional independence

to facilitate the application of a central limit theorem (Fernández-Val and Lee, 2013; Su,

Shi and Phillips, 2016; Wang, Phillips and Su, 2018). It is possible to relax this assumption

by allowing for cross-sectional dependence; see for example Huang et al. (2021). Second,

condition 3.B is a standard large N, T condition in the panel data literature (Hahn and

Kuersteiner, 2011) where both the cross-section and time series dimension grow at the same

rate. Notice that the GLP estimator suffers from the incidental parameter bias even with

large T , which is formalized in the following theorem.
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Theorem 2. Under Assumptions 1-3, as Nj and T goes to infinity

√
NjT (β̂j,h − β0

j,h)
d→Σ−1

j,hN(
√
κjB,Ψj,h), j = 1, . . . , G0 (13)

where B is the asymptotic bias with analytical formula in Section S1, and

Σj,h = plim
N,T→∞

1

Nj

∑
i∈S0

j

d
′
zx,iM zc,i,hdzx,i, Ψj,h = plim

N,T→∞
V ar

√ T

Nj

∑
i∈S0

j

d
′
zx,iM zc,i,hdzϵ,i,h


The above theorem states that we can carry out standard inference for each group IR

under large T . In practice, we can estimate Σj,h and Ψj,h consistently by

Σ̂j,h =
1

Nj

∑
i∈Ŝj

d
′
zx,iM zc,i,hdzx,i, Ψ̂j,h =

1

Nj

∑
i∈Ŝj

d
′
zx,iM zc,i,hV̂i,hM zc,i,hdzx,i , (14)

where V̂i,h is the variance estimate of dzϵ,i,h. We can use the HAC-robust estimator (6) with

the GLP residuals ei,t+h = yi,t+h − xi,tβ̂ĝi,h − ci,tϕ̂i,h. In the simulation section 6, I study the

finite sample performance of the asymptotic approximation provided by Theorem 2 and find

that for all Nj/T ≤ 1 the approximation is very good.

5 Determining the number of groups

In this section, I propose an information criterion (hereafter, IC) that correctly selects the

number of groups as the panel dimensions increase. In particular, I define

IC(G) = Q̂NT,G + ϱN,T Q̂NT,GmaxG(H + 1) (15)

where Gmax is the maximal number of groups, ϱN,T a tuning parameter that controls the

strength of penalty, and Q̂NT,G the objective function (5) evaluated at the estimated param-
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eters with G groups. The resulting estimator for the number of groups is given by

ĜIC = argmin
G=1,...,Gmax

IC(G). (16)

Compared with conventional information criteria (e.g., Su, Shi and Phillips, 2016), the pro-

posed IC is based on the GMM objective function Q̂NT,G instead of the residual sum of

squares because the GLP by construction does not aim to minimize the residual sum of

squares, which can be an arbitrary function of the supplied number of groups. In contrast,

Q̂NT,G is monotonically non-increasing in the number of groups. In a similar vein, the penalty

is scaled by Q̂NT,Gmax . To show the consistency of ĜIC I make the following assumptions.

Assumption 4 (IC).

A. As N and T go to infinity, min1≤G<G0 infγ∈G(G) Q̂NT,G
p→Q > Q0 where

Q0 = plim
N,T→∞

1

N

∑
i

∑
h

m̂0′

i,hΩ̂i,hm̂
0
i,h , m̂0

i,h =
1

T

∑
t

zi,t(yi,t+h − x′
i,tβ

0
g0i ,h

− c′i,tϕ
0
i,h) .

B. ϱN,T → 0 and there exists some constant a > 0 such that ϱN,TT
a → ∞.

Overall, the assumption is similar to Assumptions B5-B6 in Su, Shi and Phillips (2016).

First, part 4.A requires the objective function to be bounded below by the global minimum

Q0 when under-fitted, regardless of the group partition. Second, part 4.B disciplines the

penalty strength ϱN,T . In simulations, I find that ϱN,T = (NT )−1/4 works well. Given the

assumption, I establish consistency in the following proposition.

Proposition 1. Under Assumptions 1-2 and 4, for N, T → ∞ we have

P
(
min
G ̸=G0

IC(G) > IC(G0)

)
p→ 1 . (17)

The proposition establishes the consistency of the proposed information criterion. Nev-

ertheless, when T is limited it tends to under-select the number of groups; see Section 6.3
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and Supplementary Material S2.2.

For such cases the distinctiveness of the estimated IRs becomes a useful heuristic criterion.

Intuitively, when the group IRs are close to each other, misclassification between groups could

be large, as implied by the group separation condition 2.B. Hence, we may consider a smaller

group number when IRs are inseparable (Theodoridis and Koutroumbas, 2009).

6 Simulation study

This section evaluates the finite sample performance of the GLP estimator. Specifically, I

consider three settings where (i) the number of groups is known, (ii) the number of groups

is unknown and determined by the information criterion (16), and (iii) there is no group

structure and individual IRs are truly distinct. For each scenario, I compare the GLP

estimator with the individual LP-IV (IND), the panel LP-IV (PAN), and the infeasible GLP

(IGLP) where the group partition is known.6

6.1 Simulation design

I generate data from a dynamic panel data model given by

yi,t = µi + ρgiyi,t−1 + δgixi,t + ϵi,t

xi,t = µi + πz̃i,t + ui,t

, (18)

where the individual fixed effects µi are drawn independently from the uniform distribution

U(0, 1), the instrument z̃i,t is i.i.d. N(0, 1), and the error terms ϵi,t and ui,t are generated

from a bivariate normal distributionϵi,t

ui,t

 i.i.d.∼ N


0

0

 ,

 1 0.3

0.3 1


 .

6The IGLP is the (fully-pooled) panel LP-IV (Jordà, Schularick and Taylor, 2015) for each
group, with standard errors clustered at the individual level (Cameron and Miller, 2015).
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We are interested in estimating the effect of xi,t on yi,t+h. To do so, let βgi,h denote the

horizon h impulse response for group gi. We can recover this impulse response from the

group local projection model

yi,t+h = x′
i,tβgi,h + c′i,tϕi,h + ϵi,t+h , (19)

where ci,t = (1, yi,t−1)
′ using zi,t = (z̃i,t, 1, yi,t−1)

′ as instruments.7 Overall, the DGP repre-

sents a large class of panel data models relevant for empirical studies (e.g., Acemoglu et al.,

2019).

Table 1 reports the parameter values. The first two rows show different combinations

of ρgi and δgi that control the persistence and the magnitude of the IRs respectively. For

example, in Design 1 with two groups (G0 = 2), the IRs share the same magnitude (δ1 =

δ2 = 3) but have different levels of persistence (ρ1 = 0.2, ρ2 = 0.6). Row IV assigns 0.7 to

π to ensure a strong IV setup, and row Fraction indicates the share of units in each group.

To save space, I report G0 = 2 and G0 = 3 when the group number is known, and G0 = 3

when the group number is estimated by the information criterion.

It is interesting to study the performance of the GLP estimator for the case where the

impulse responses are heterogeneous, but there is no group structure. To this end, I modify

DGP (18) by

yi,t = µi + ρiyi,t−1 + δixi,t + ϵi,t , (20)

where the only change is that the coefficients that determine the impulse responses are

individual-specific. I consider random coefficients ρi ∼ U(0.1, 0.9) and δi ∼ U(1, 3).
7Alternatively, to avoid the dynamic panel bias in settings where T is small relative to N ,

we can take first differences and consider

∆yi,t+h = ∆x′
i,tβgi,h +∆yi,t−1ϕi,h + ϵi,t+h ,

which can be estimated using zi,t = (z̃i,t−1, yi,t−2) as instruments. I repeat the simulation
exercise in Supplementary Material S2.5 with this estimator.

18



I evaluate the GLP using four criteria:8 (1) the classification accuracy (AC), (2) the

ratio of confidence lengths between the GLP and the IND (BR), (3) the root mean squared

error (RMSE), and (4) the coverage rates. As a benchmark, the GLP confidence bands are

computed according to Theorem 2, and the results of the fixed T inference are reported in

Supplementary Material S2.4. Formally, these criteria are:

AC = 1
mN

∑m
r=1

∑N
i=1 1{ĝ

(r)
i = g0i }

BR = 1
mNH

∑m
r=1

∑N
i=1

∑H
h=0

GSE(r)
ĝi,h

SE(r)
i,h

RMSE =
√

1
mNH

∑m
r=1

∑N
i=1

∑H
h=0(β̂

(r)
ĝi,h

− β
0(r)

g0i ,h
)2

Coverageh = 1
mG

∑m
r=1

∑G0

j=1 1{β
0(r)
j,h ∈ CIj,h}

, (21)

where m is the number of replications.

With known group numbers, I run m = 1000 simulations for each parameter design

and different combinations of N = 100, 200, 300, and T = 100, 200, 300. With unknown

group numbers or truly distinct IRs, I run m = 500 simulations with eight guesses Gguess =

{1, 2, 3, 4, 5, 6, 7, 8}, and report the associated RMSE and the estimated group number.

6.2 Simulation results: known group number

Table 2 and Table 3 report the results. Five observations stand out. First, the classification

accuracy improves dramatically as T increases, as Theorem 1 predicts. With a moderate

sample size (N = 100, T = 100, G0 = 2, Design 1), the GLP achieves 84.1% classification

accuracy, which further rises to 96.2% with T = 300. To better illustrate the effectiveness, I

report in Figure 1(a) a typical example of the individual IR estimates under (N = 300, T =

100, G0 = 2, Design 1). The thin lines are individual IR estimates, and the thick lines

indicate the maximal and the minimal estimates at each horizon. Although the individual
8The labels of estimated groups do not necessarily correspond to the true labels. To

overcome this issue, I follow Bonhomme and Manresa (2015) and relabel the group estimates
such that the accuracy is maximized, by going through all possible label permutations. The
RMSE is then computed using the new labels.
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IRs are highly overlapped, the GLP still achieves 84% accuracy.

Second, the GLP yields significant efficiency gains for all sample sizes. Column BR shows

that the average lengths of the GLP confidence intervals closely track the infeasible coun-

terparts, and are, in the worse case, only one-fifth of the individual LP-IV ones. Moreover,

Table 3 shows that the coverage rates of the GLP bands are satisfactory when the time series

dimension is large, but can be severely under-covered in short panels. This is because the

GLP estimator is subject to two sources of bias: the incidental parameter bias, as 2 shows,

and the misclassification bias. The former is well studied in the panel data literature and

the magnitude of the bias is closely related to the N/T ratio. In contrast, Section S2.1 shows

that the misclassification bias greatly alleviates as long as T gets large.

Third, the GLP leads to much lower RMSE than alternative methods for all sample sizes.

Consider (N = 300, T = 100, G0 = 3, Design 1) for example. For one thing, the average

GLP RMSE is 36.2% (32.9%) lower than the PAN (IND) counterpart. For another, the GLP

RMSE converges to the infeasible one at a rate faster than the individual LP-IV counterpart.

Fourth, the GLP performs well as we fix T and increase N . The reason is that, as

noted in Section 4, T can grow polynomially slower than N . Supplementary Material S2.1

further corroborates this by the stable performance of the GLP under (N = 1500, T = 300).

Therefore, the GLP is reliable in practically relevant sample sizes.

Finally, there is an overall deterioration in all evaluating metrics comparing G0 = 2

with G0 = 3, since the IRs are much less informative in the latter case; see for example

Figure 1(b). Note that even in this case, the GLP still outperforms the alternatives.

Overall, the GLP estimator has excellent finite sample properties, and it outperforms

both the panel LP-IV and the individual LP-IV.

6.3 Simulation results: unknown group number

Table 4 reports the RMSE of the GLP under different supplied group numbers, and Row

IC shows the estimated number of groups. The table is revealing in several ways. First,
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the RMSE is U-shaped as the number of groups increases. Therefore, the GLP yields lower

RMSE than PAN (biased) and IND (inefficient), even with the misspecified group number.

Second, the number of groups selected by the information criterion (15) converges to

the true as the sample size increases. As we can see, although it may under-select when

T is smaller than N , the estimated number of groups steadily converges. Supplementary

Material S2.2 further confirms the result under alternative sample sizes.

Third, even when the criterion under-selects, the GLP always leads to more precise

estimates than the alternatives. Consider Design 1 with (N = 300, T = 100). Although

the IC chooses two groups (Ĝ = 2), the associated error (0.557) is much smaller than the

alternatives (0.775 by the individual LP-IV and 0.814 by the panel LP-IV).

6.4 Simulation results: no group structure

Table 5 reports the results when the data have no group structure. Interestingly, even

though the true number of groups is now N , the RMSE is still U-shaped because individual

IR estimates can be noisy. Consequently, the GLP produces a reasonable approximation of

the true responses.

Furthermore, the IC is rather conservative: it selects fewer groups than is needed to

minimize the RMSE. For example, when N = 100 and T = 100, the IC leads to two or three

groups, whereas the RMSE is minimized with six groups.

7 Heterogeneous house price responses in the US

There is abundant evidence that a tightening monetary shock dampens aggregate house

prices (Jarociński and Smets, 2008; Iacoviello and Neri, 2010; Jordà, Schularick and Taylor,

2015). However, recent research argues that the responses of bubbly assets are indeterminate

(Galí, 2014). Given that regional housing markets are highly fragmented with potentially

different bubble components (Glaeser and Nathanson, 2015), it is natural to ask: Do regional
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house prices respond differently to monetary shocks? And if so, in what ways?

I answer the questions through the lens of MSA-level housing markets in the US. Specif-

ically, I estimate the following group local projections model:

yi,t+h = xi,tβgi,h + c′i,tϕi,h + ϵi,t+h, h = 1, . . . , 24 . (22)

Here, yi,t+h are the cumulative house price changes for 382 MSAs from 1991:1 to 2007:12.9 xi,t

is the Fed Funds rates, instrumented by zi,t, the high frequency surprises in fed fund futures

that are robust to the Fed information effect (Miranda-Agrippino and Ricco, 2021). The

control variable ci,t contains the constant term, four lags of the independent and dependent

variables, current and four lags of the 30-year fixed-rate for mortgage products, the industrial

production growth, the PCE inflation, and the growth of real estate loans, making the model

comparable to Del Negro and Otrok (2007).10 Supplementary Material S3.1 provides details

of the data construction.

7.1 Standard LP-IV results

As a benchmark, I present the results of standard LP-IV models in Figure 2. The Newey and

West (1987) HAC robust F-statistic is 57.6, which eases the concern for weak instruments

(Stock and Watson, 2018).

Consider first panel 2(a). House prices depreciate after a contractionary monetary shock,

albeit the magnitude is small. The result suggests that monetary tightening can slow the pace

of house price appreciation, which is consistent with conventional wisdom (e.g., Iacoviello

and Neri, 2010). Interestingly, this policy recommendation reverses if we consider panel 2(b):
9I set the maximal horizon to two years so that IR estimates are more precise and the

GLP procedure is more reliable. The results are robust to different choices of H and sample
periods.

10The constant term in the baseline model raises the concern for the dynamic panel bias
(Nickell, 1981). However, in our setup T is large, and the bias should be negligible. Moreover,
Supplementary Material S3.4 shows that the results are robust to excluding the lagged
dependent variables.
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The individual IRs are highly dispersed with a large fraction exhibiting positive responses,

suggesting that curbing soaring house prices using interest rate tools might instead cause

instability.

While the message put forward by the individual LP-IV is alarming, drawing definitive

conclusions based on these estimates is difficult due to the wide confidence bounds. As panels

2(c) and 2(d) show, the individual IRs are insufficient to support either of the claims above.

The GLP is exactly designed to find a data-driven middle ground between panels 2(a) and

2(b), i.e., between unit-specific and common IR estimates.

7.2 Grouping housing dynamics

I now discuss the results of the GLP with three groups.11 The estimated group IRs are in

Figure 3. To better understand the group composition, I report in Table 6 three categories of

group-specific economic indicators: economic development, housing market conditions, and

household debt.

As is clear, the GLP recovers three distinct responses: (i) considerable housing apprecia-

tion (Group 1), (ii) muted responses (Group 2), and (iii) significant depreciation (Group 3).

Specifically, Group 1, whose IRs are positive and sizable, is more economically developed:

with only 6.3% of the MSAs, this group accounts for 13.1% of the total personal income.

In stark contrast, Group 3 constitutes 41.4% of the MSAs, while the share of personal in-

come is only 29%. Moreover, Group 1 has more regulated housing markets and less elastic

house supply, implying more pronounced housing cycles (Saiz, 2010). Meanwhile, Groups 2

and 3 are similar in terms of housing conditions. Lastly, Groups 1 and 3 are inhabited by

heavily indebted households, as is suggested by the high debt-to-income ratio. Overall, the

revealed patterns of Group 1 are in accord with the narratives of housing bubbles (Glaeser

and Nathanson, 2015).
11See Supplementary Material S3.2 for a detailed discussion on the selection of the number

of groups. Importantly, the patterns revealed are robust to the choice of group number.
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Interestingly, Table 6 also shows the large standard deviations of the indicators within

each group, suggesting that external economic criteria may fail to recover the group structure.

For instance, although income levels are positively correlated with housing responses, other

latent factors are also at work. Therefore, classifying MSAs based solely on income levels

will result in only negative IRs of different magnitudes. To see this, I report in Figure 4 the

IRs using income as a classifying criterion. As panel 4(a) shows, the responses of the richest

10% of MSAs are, if anything, negative rather than positive. On the contrary, panel 4(b)

shows that the poor MSAs in Group 1 have unambiguously positive IRs, even though they

are generally poorer than MSAs with housing depreciation (Group 3).

Another widely used grouping criterion is geographical location (e.g., Ferreira and Gy-

ourko, 2012). As is clear from Figure 5, the geographical distribution of MSAs across groups

is far from random, with large spatial clusters such as California (Group 1) and Florida

(Group 3) readily discernible. However, it is difficult to summarize the distribution through

simple rules. For example, classifying MSAs into coastal, sunbelt, and interior areas would

again average out the positive IRs.

In conclusion, the GLP estimator can capture well-established facts about housing cycles

such as the impact of housing supply, credit conditions, and geography. More importantly, it

outperforms those grouping criteria in that it takes into account hidden interactions among

those factors. For example, perhaps location is more important than income level for poor

MSAs in California, while for MSAs on the east coast, debt accumulation may be more deci-

sive. Empirically, the GLP recovers positive housing responses to contractionary monetary

shocks, which have not been documented in the literature.

7.3 Alternative: FAVAR

The previous section shows that the GLP procedure outperforms external grouping criteria

in estimating heterogeneous IRs. A natural follow-up is whether alternative methods can

also recover the latent group structure. To answer this question, I re-estimate the housing
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responses to monetary shocks using a FAVAR model, which provides a parsimonious way to

characterize the heterogeneity (e.g., Del Negro and Otrok, 2007). Specifically, I estimate the

following model: 
it

wt

ft

 =

q∑
j=1

Aj


it−j

wt−j

ft−j

+ ut , (23)

where it is the policy rate (FFR), wt is a P × 1 vector of controls, and ft is an r × 1 vector

of factors extracted through

Yt = Λft + et. (24)

Here the information variable Yt is a vector of housing inflation in 382 MSAs, Λ is an N × r

factor loading matrix, and et is the error term. The number of factors is determined by

Onatski’s (2010) criterion, leading to three factors (r = 3) that explain 47.7% of the variation

in Yt. To facilitate comparison, I estimate the above model with the same sampling period,

control variables, number of lags (q = 4), and instrument as in the GLP before.

Figure 6 summarizes the results. As is clear, the confidence bands generated by FAVAR

are exceedingly wide. Even for typical macro variables such as industrial production, the

confidence intervals are so large that the sign of the responses can be ambiguous. Moreover,

for some MSAs such as New York-Newark-Jersey City and Victoria, the confidence bands are

larger than the individual LP-IV counterparts due to the additional estimation uncertainty

in (23) caused by the factor estimation in (24).

Besides, there is fairly weak evidence of positive housing responses. Take New York-

Newark-Jersey as an example. Compared with Figure 2(c), now the positive IRs are not only

of much smaller magnitude but also associated with wider confidence bands. Considering

all MSAs, Figure 6 shows that house prices decline in most areas after tightening monetary

shocks.

Such observation is nonetheless misleading because the estimated factors only account

for half of the variations in housing inflation, making the estimated IRs poor proxies for the
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true responses. As Figure 7 shows, increasing the number of factors leads to an opposite

pattern: House prices rise after tightening monetary shocks, and with eight factors, there

seem to be two different IR shapes. However, this pattern remains inconclusive since the

eight factors capture only 65.38% of the variations. But to approximate the data well, the

dimension of the VAR system would be too large, e.g., 29 factors are required to get R2 over

90%, which introduces greater estimation uncertainty and makes the results unreliable.

In short, the FAVAR model fails to recover heterogeneous IRs when the variation ex-

plained by the factors is moderate, i.e., when the data do not have a strong factor structure,

and the resulting IRs could even have the wrong sign. And even if the principal components

explain the data well, the confidence bands can still be too large to be useful. In contrast,

the GLP approach can capture the group structure well, as it directly groups the IRs without

imposing an a priori dimension reduction technique.

8 Conclusion

Heterogeneous impulse responses are often ignored due to estimation difficulty. This paper

proposes a solution to capture the heterogeneity that builds on clustering in panel data

models. The proposed group local projection (GLP) estimator recovers the latent group

structure of the impulse responses and is compatible with standard inference under large N

and T. Compared with the individual LP-IV, the GLP facilitates policy recommendations

by reducing confidence bands. Simulation studies demonstrate the reliable finite sample

performance of the GLP.

Applying the GLP to the study of monetary policy and house prices shows that the GLP

successfully recovers the latent groups and the group IRs. In particular, the paper finds

that house prices climb up in economically important areas following an unexpected rise in

the interest rate, which cautions against the use of monetary policy to control house prices.

Notably, neither the external grouping criteria nor FAVAR can recover the group pattern.
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The paper also raises several promising research avenues for the future. First, it is inter-

esting to extend the GLP to alternative clustering algorithms that accommodate uncertain

group assignments or outliers (e.g., Lewis, Melcangi and Pilossoph, 2019). Second, one

may relax Assumption 2 to allow for richer group heterogeneity such as time-varying group

membership. Yang, Yan and Huang (2019) serve as a promising first step in this direction.
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Tables and figures

Table 1: Simulation design

G0 = 2 G0 = 3

Design 1
δ (3, 3) (3, 3, 3)

ρ (0.2, 0.6) (0.2, 0.6, 0.9)

Design 2
δ (1, 2) (1, 2, 3)

ρ (0.5, 0.5) (0.5, 0.5, 0.5)

IV π 0.7 0.7

Fraction (0.5, 0.5) (0.3, 0.3, 0.4)

Note: This table presents the true parameter values in the simulation study, correspond-

ing to model (18). The row Fraction defines the fraction of the individuals in each group.
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Table 2: GLP Performance (Known Group Number)

G0 = 2 G0 = 3

BR (%) RMSE (×100) BR (%) RMSE (×100)
Design N T AC (%) GLP IGLP GLP PAN IND IGLP AC (%) GLP IGLP GLP PAN IND IGLP

1

100 100 84.1 15.8 15.7 29.6 33.5 63.8 10.0 78.3 20.3 19.3 52.7 81.7 77.5 15.3
100 200 92.5 15.0 14.8 19.1 33.0 43.4 6.5 90.3 18.8 18.0 34.0 81.2 52.5 9.7
100 300 96.2 14.7 14.5 13.6 32.8 35.0 5.1 95.0 18.2 17.7 24.7 81.1 42.3 7.5
200 100 84.1 11.2 11.2 29.0 33.2 63.9 7.9 78.3 14.4 13.8 52.1 81.5 77.5 12.1
200 200 92.7 10.6 10.6 18.4 32.8 43.4 4.8 90.2 13.3 12.9 33.6 81.1 52.5 7.1
200 300 96.3 10.4 10.3 13.1 32.7 35.0 3.8 95.1 12.9 12.6 24.1 81.0 42.3 5.5
300 100 84.0 9.2 9.2 28.8 33.1 63.9 7.0 78.4 11.8 11.3 51.9 81.4 77.4 10.9
300 200 92.8 8.7 8.6 18.2 32.8 43.4 4.2 90.2 10.9 10.6 33.8 81.0 52.6 6.3
300 300 96.3 8.5 8.5 12.9 32.7 35.0 3.2 95.1 10.5 10.4 24.2 81.0 42.3 4.7

2

100 100 99.7 15.9 15.7 6.4 22.3 38.5 5.9 99.6 19.5 19.1 9.7 36.8 50.7 9.0
100 200 100.0 15.0 14.8 3.9 22.0 26.1 3.9 100.0 18.3 17.9 6.1 36.5 34.5 6.0
100 300 100.0 14.7 14.5 3.1 21.9 21.1 3.1 100.0 18.0 17.6 4.8 36.4 27.8 4.8
200 100 99.7 11.3 11.2 5.3 22.1 38.5 4.7 99.6 13.8 13.6 7.6 36.6 50.7 6.9
200 200 100.0 10.6 10.6 3.0 21.9 26.2 2.9 100.0 13.0 12.8 4.5 36.4 34.5 4.4
200 300 100.0 10.4 10.3 2.3 21.9 21.1 2.2 100.0 12.7 12.6 3.5 36.3 27.7 3.5
300 100 99.7 9.2 9.2 4.9 22.1 38.6 4.1 99.6 11.3 11.2 6.8 36.5 50.7 6.0
300 200 100.0 8.7 8.6 2.5 21.9 26.2 2.4 100.0 10.6 10.5 3.9 36.4 34.4 3.8
300 300 100.0 8.5 8.5 2.0 21.9 21.1 1.9 100.0 10.4 10.3 3.0 36.3 27.8 2.9

Note: This table reports the classification accuracy (AC), the confidence bands ratios between the GLP and the individual LP-
IV (BR), and the RMSE of the GLP. GLP, PAN, IND and IGLP stand for the GLP, panel LP-IV, individual LP-IV and the
infeasible GLP respectively. The infeasible GLP is group-by-group using standard panel LP-IV where we know the true group
structure beforehand. Classification accuracy and band ratios are in percentage terms, and RMSE are multiplied by 100.
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Table 3: GLP Coverage Rates (%)

G0 = 2 G0 = 3

Design N T h=0 h=1 h=2 h=3 h=4 h=5 h=6 h=0 h=1 h=2 h=3 h=4 h=5 h=6

1

100 100 92.4 90.6 88.1 86.4 86.7 88.2 89.0 92.4 86.6 88.2 91.4 93.1 94.7 94.9
100 200 94.1 94.0 94.9 94.4 92.0 93.3 92.3 94.3 91.3 91.9 93.3 94.0 94.9 94.7
100 300 94.6 94.3 95.2 94.6 94.4 93.6 93.8 94.5 93.2 92.9 93.0 93.9 95.0 94.8
200 100 90.2 86.2 78.7 77.2 80.2 83.9 84.8 91.6 75.7 77.1 83.0 87.9 91.5 93.3
200 200 92.9 91.7 92.6 92.0 91.3 91.7 91.5 93.2 85.7 86.2 89.5 93.1 93.2 94.5
200 300 93.2 93.6 95.7 95.6 93.9 93.4 92.4 93.7 90.6 92.1 93.4 93.9 94.3 94.6
300 100 87.7 80.0 71.2 68.1 72.7 78.7 82.4 89.4 68.9 67.0 74.5 83.1 88.0 92.1
300 200 92.1 89.9 91.7 89.0 88.9 89.3 88.1 92.4 81.1 81.6 84.9 90.2 93.0 94.1
300 300 92.4 92.0 94.9 94.5 92.6 92.1 90.6 94.6 88.9 88.6 90.2 92.3 93.5 94.4

2

100 100 92.7 92.6 90.7 90.7 91.8 92.3 92.0 94.2 93.7 91.4 91.4 91.8 92.5 91.4
100 200 94.1 93.8 92.9 93.3 92.4 92.4 93.9 94.3 93.7 92.5 91.9 93.0 92.6 93.8
100 300 95.5 93.8 93.9 93.0 93.4 93.5 94.0 94.6 94.3 93.9 94.3 93.3 93.6 93.2
200 100 90.9 91.5 89.4 87.5 86.4 85.7 86.4 92.3 92.7 90.1 89.3 89.2 88.9 89.0
200 200 93.9 93.6 91.9 90.9 90.8 90.4 91.4 94.6 94.3 93.2 92.1 92.6 91.9 92.0
200 300 94.5 94.5 93.4 93.0 92.3 93.4 92.8 94.4 94.2 93.4 93.4 93.1 92.8 92.0
300 100 89.9 90.4 85.6 82.4 82.7 83.3 82.5 91.8 90.7 87.9 86.4 86.7 86.5 87.2
300 200 92.6 92.4 91.2 90.2 90.1 89.2 89.3 93.2 92.4 90.8 90.6 90.4 89.6 90.3
300 300 94.4 94.0 92.4 91.6 91.5 90.5 91.4 93.8 93.9 92.8 92.1 92.0 92.3 92.3

Note: This table reports the coverage probability of the large T inference as in Theorem 2. Alternative inference
methods are compared in Supplementary Material S2.4.
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Table 4: GLP with Unknown Group Number (RMSE ×100)

N 100 100 100 200 200 200 300 300 300
Design T 100 200 300 100 200 300 100 200 300

1

PAN 81.7 81.2 81.0 81.5 81.1 81.0 81.4 81.0 81.0
Ĝ = 2 56.7 40.2 33.0 56.1 39.8 32.6 55.7 39.6 32.4
Ĝ = 3 58.2 39.2 27.1 57.9 39.0 26.7 57.4 38.5 26.3
Ĝ = 4 59.2 39.7 30.3 58.4 39.3 29.7 57.7 39.2 29.4
Ĝ = 5 60.0 40.4 31.1 59.1 39.9 30.8 58.7 39.7 30.5
Ĝ = 6 61.0 41.1 31.9 60.0 40.6 31.2 59.4 40.2 31.1
Ĝ = 7 62.1 41.7 32.4 60.8 41.0 31.9 60.2 40.7 31.4
Ĝ = 8 62.5 42.1 32.9 61.4 41.4 32.2 60.7 41.1 31.8
IND 77.5 52.5 42.2 77.7 52.6 42.2 77.5 52.6 42.3
IC 2.0 2.7 3.0 2.0 2.9 3.0 2.0 3.0 3.0

2

PAN 36.8 36.5 36.4 36.6 36.4 36.3 36.5 36.4 36.3
Ĝ = 2 19.7 17.9 17.5 18.9 17.5 17.2 18.6 17.3 17.1
Ĝ = 3 9.7 6.2 4.8 7.6 4.6 3.6 6.9 3.9 3.0
Ĝ = 4 21.6 15.1 12.3 20.1 14.0 11.4 19.5 13.6 11.1
Ĝ = 5 25.1 17.5 14.3 23.4 16.4 13.3 22.8 15.9 12.9
Ĝ = 6 27.4 19.1 15.6 25.6 17.8 14.6 24.9 17.4 14.2
Ĝ = 7 29.1 20.3 16.5 27.1 19.0 15.4 26.3 18.4 15.0
Ĝ = 8 30.5 21.2 17.3 28.4 19.8 16.1 27.5 19.2 15.7
IND 50.7 34.4 27.8 50.7 34.5 27.8 50.6 34.5 27.7
IC 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0

Note: This table reports the RMSE (multiplied by 100) of the GLP with different
supplied group number. Cells chosen by the information criterion are in bold.
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Table 5: GLP with No Group Structure (RMSE ×100)

N 100 100 100 200 200 200 300 300 300

T 100 200 300 100 200 300 100 200 300

PAN 45.7 45.2 45.7 45.6 45.4 45.4 45.8 45.5 45.5
Ĝ = 2 39.9 39.1 39.0 39.7 39.1 39.0 39.8 39.2 39.2
Ĝ = 3 37.4 34.0 33.6 36.7 34.2 34.1 36.8 34.6 34.4
Ĝ = 4 36.6 31.6 30.3 35.7 31.6 30.3 35.8 31.7 30.6
Ĝ = 5 36.4 30.0 28.2 35.3 30.2 28.4 35.4 30.2 28.6
Ĝ = 6 36.3 29.2 27.2 35.2 29.2 27.2 35.2 29.3 27.3
Ĝ = 7 36.8 28.7 26.2 35.5 28.7 26.1 35.2 28.5 26.4
Ĝ = 8 37.0 28.4 25.5 35.7 28.3 25.5 35.3 28.1 25.6
IND 50.5 34.2 27.8 50.5 34.4 27.6 50.6 34.3 27.8

IC 2.10 2.80 3.30 2.00 3.00 3.50 2.10 3.10 3.70

Note: This table reports the RMSE (multiplied by 100) of the GLP with
different supplied group number. Cells chosen by the information crite-
rion are in bold.
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Table 6: MSA Group Economic Profile

GDP Income Population Employment Regulation Elasticity Debt (Low) Debt (High)

Ĝ g count mean std mean std mean std mean std mean std mean std mean std mean std

2
1 59 52436 18145 48493 12688 1081 2061 669 1343 0.293 0.848 1.870 0.923 1.586 0.514 1.740 0.485
2 323 46052 13190 45446 9399 666 1538 413 1001 -0.196 0.801 2.721 1.485 1.400 0.474 1.561 0.445

3
1 24 53686 22898 49063 14082 1486 2768 885 1782 0.513 0.396 1.530 0.775 1.841 0.449 1.954 0.435
2 200 48452 14444 46352 9532 774 1861 490 1220 -0.172 0.871 2.685 1.465 1.359 0.440 1.529 0.418
3 158 44238 11531 44888 9828 560 918 339 590 -0.153 0.780 2.631 1.443 1.453 0.511 1.614 0.481

4

1 24 53686 22898 49063 14082 1486 2768 885 1782 0.513 0.396 1.530 0.775 1.841 0.449 1.954 0.435
2 87 49303 12894 47058 9575 842 2224 535 1462 0.135 0.985 2.131 0.870 1.413 0.465 1.579 0.446
3 168 46887 14375 46086 10456 642 1311 404 857 -0.336 0.695 2.987 1.616 1.364 0.442 1.525 0.414
4 103 43822 11592 43943 8158 603 1040 362 661 -0.154 0.815 2.616 1.466 1.450 0.530 1.622 0.499

Note: GDP and income are per capita measured in dollars. Population and employment are measured in thousands of person and thousands
of jobs respectively. Regulation stands for the Wharton residential land use regulatory index, and Elasticity is the house supply elasticity.
Debt (Low) and Debt (High) correspond to the lower bound and upper bound of the debt to income ratio.
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Figure 1: Simulation Example

(a) Design 1 (G0 = 2, N = 300, T = 100) (b) Design 1 (G0 = 3, N = 300, T = 100)
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(a) Panel LP-IV (b) Individual LP-IV

(c) New York-Newark-Jersey City (d) Victoria, TX

Figure 2: House Prices Impulse Responses (LP-IV)

Note: All IRs are measured in percentage and correspond to a one percentage
increase in the FFR. The shaded areas indicate 95% confidence bands. For panel
LP-IV, standard errors are clustered at MSA level (Cameron and Miller, 2015),
and for the individual LP-IV, NeweyWest HAC standard errors are used with
H + 1 lags.
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Figure 3: Group Impulse Responses (Ĝ = 3)

Note: For the GLP estimates, the standard errors are computed with large T
inference as in Theorem 2.
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(a) The Richest 10% MSAs (b) Poorest 10% MSAs in Group 1

Figure 4: External Grouping Criterion (Income Level)
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Figure 5: Geographical Distribution of MSA Groups
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Figure 6: Impulse Responses: FAVAR

Note: The shaded areas indicate 95% confidence bands using moving block boot-
strap as in Jentsch and Lunsford (2022). Results are robust to different inferential
methods.
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(a) Five Factor (b) Eight Factors

Figure 7: Housing Responses: FAVAR with Different Factors
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