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Abstract

This paper models the joint dynamics of macro aggregates and functional variables

within the Structural VAR framework. I reduce the dimension of the system using

functional PCA and show that the proposed functional VAR (FVAR) consistently

recovers the responses of the functions. The FVAR is easy to implement and fully

compatible with conventional SVAR tools. Simulation evidence shows that it performs

satisfactorily in finite samples. Applying FVAR to study the impact of tax shocks on

income distributions in the UK, I find that tax cuts persistently reduce the density of

lower-middle-class households, which is offset by a substantial increase in the richer

range and a moderate increase in the poorer range. However, this pattern is not

captured by VARs with conventional inequality measures.
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1 Introduction

What is the impact of economic policy on income distributions? Does inequality affect busi-

ness cycles? Although the questions have received increasing attention in recent decades

(Benhabib et al., 2011; Jappelli and Pistaferri, 2014; Colciago et al., 2019), very few attempt

to empirically answer them directly. One major obstacle is that distributions are intrinsi-

cally infinite dimensional functions, which poses a great challenge to standard econometric

methods.

Instead, the most popular method is to replace the distribution functions by summary

statistics —for example percentiles, moments and Gini coefficients— and proceed with small-

scale VARs or the local projection counterparts (e.g. Coibion et al., 2017; ?). However, I

show in the empirical application that policy implications change if we look at the entire

income distributions instead of the inequality measures.

This paper proposes a general framework to study the joint dynamics of macro aggregates

and the entire distributions building on recent advances in functional analysis (Horváth and

Kokoszka, 2012).1 Specifically, I augment a standard VAR model with the distribution func-

tions and reduce the dimension of the system though functional PCA. The model therefore

consists of two main steps. First, researchers extract the functional principal component

scores, which capture the dynamics of the underlying functions. Second, substitute the FPC

scores for the functions and estimate the resulting VAR by standard techniques; see Kilian

and Lütkepohl (2017) for a review. In particular, I show that the functional VAR procedure

is able to consistently recover the impulse responses of the distribution functions.

A simulation study is conducted to evaluate the functional VAR framework in finite

samples. I simulate data from a functional VAR model and estimate the functional responses

using SVAR with internal instrument (Plagborg-Møller and Wolf, 2021). Simulation evidence

shows that the estimation errors are moderate and the coverage rates are satisfactory when

the underlying true responses are regular, i.e. hump-shaped. In contrast, it fails to generate
1The framework is applicable to general functions, e.g. yield curves.
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responses of irregular shapes.

Within the functional VAR framework I revisit the impact of tax policy on income dis-

tributions in the United Kingdom from 1968Q1 to 2009Q4. Specifically, I estimate quarterly

household income distributions using detailed data from the Households Below Average

Income Dataset (HBAI).2 I then estimate the functional VAR model with exogenous tax

changes constructed by Cloyne (2013). I find that following a tax cut, there is a sharp and

persistent decrease in the densities of households with weekly income between £100−£300.

Moreover, such decrease is compensated for by large increases in the densities of the house-

holds with income over £300, and only a moderate increase in the extremely poor range.

Furthermore, counterfactual analysis shows that tax policy explains a non-negligible fraction

of the cyclical fluctuations in the income distributions.

The findings reflect two opposing forces. On the one hand, tax cuts boost the economy

and households benefit from higher employment and income (Cloyne, 2013; Ljungqvist and

Smolyansky, 2016). On the other hand, tax cuts are generally associated with spending cut

especially during fiscal consolidation (Erceg and Lindé, 2013; Glomm et al., 2018), which

may hurt the poor. Our results indicate that the former effect dominates, but tax cuts

should also be complemented by targeted policy to the extremely poor. Importantly, the

observed pattern is also consistent with the literature that tax cuts unambiguously increases

conventional inequality measures, e.g. Gini coefficients (Clark and Leicester, 2005; Coady

and Gupta, 2012). Nonetheless, given the responses of the entire distribution, the rising

inequality should be interpreted as a natural outcome of the shrinking middle class, instead

of an alarming situation that cautions against tax cuts.

Alternative methods to study functional variables have been proposed. Chang et al.

(2022) use sieve approximations to decompose the functional variables. Our framework differs

in two important aspects. First, the basis functions in our functional VAR are eigenfunctions

of the data covariance function, and are optimal in the sense that it maximizes the variations
2The HBAI dataset contains income data for all surveyed households, excluding the short-term self-

employed and temporarily separated couples.
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explained given the same number of basis. Second, our approach can be estimated easily

by OLS whereas the state-space model in Chang et al. (2022) is estimated by Bayesian

estimation.3 Another related method is the “VARs with functional shocks” by Inoue and

Rossi (2021) where they rely on certain parametric models to decompose functional variables.

In contrast, our framework is non-parametric and can handle general functions in the L2

space.

Our approach also connects to the burgeoning literature on functional linear regressions

and functional autoregressions (Bosq, 2000; Shin, 2009; Kokoszka and Reimherr, 2013; Hör-

mann and Kidziński, 2014). However, in the current setup, I establish asymptotic properties

for mixed-type data that contains errors from density estimation and exhibits weak depen-

dence. Moreover, the object of interest is the coefficient (and thus the impulse responses),

instead of the prediction (Cai and Hall, 2006; Aue et al., 2015).

The remainder of the paper is organized as follows. Section 2 illustrates the functional

VAR framework through a simple example. Section 3 formalizes the model and provides de-

tails on the estimation. Section 4 discusses the asymptotic properties and Section 5 evaluates

the finite sample performance. Section 6 presents the empirical application and Section 7

concludes.

2 An illustrative example

Suppose we are interested in the impact of TFP shocks on household income distributions,

we can model it by

yt = ayyyt−1 +
∫
ayf (u)ft−1(u)du+ eyt

ft(u) = afy(u)yt−1 +
∫
aff (u, v)ft−1(v)dv + eft(u)

, t = 1, . . . , T (1)

3Another recent work within the Bayesian paradigm is Huber et al. (2023) where the dynamics of func-
tional scores and the aggregates are modeled by a Bayesian VAR.
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where yt is the GDP growth and ft(u) is the income density function. For illustrative purpose,

I assume that both yt and ft(u) have zero mean.

Although the proposed formulation is appealing, direct estimation is challenging because

the model is of infinite dimension. One may therefore propose to replace ft by its realizations

on some finite grid [ft(u1), . . . , ft(uN)]. This approach however faces a sharp bias-variance

trade-off: A large grid ensures accurate approximation but inflates estimation errors, whereas

a small grid discards valuable information and results in omitted variable bias. Alternatively,

one may prefer summary statistics of ft, e.g. Gini coefficients. However, such measures are

not sufficient statistics and important dynamics of the functions could be missed.

In contrast, the functional VAR procedure balances well the bias-variance trade-off. The

main idea is that with functional PCA techniques, we can decompose ft into eigenfunctions

and finite dimensional functional principal component (FPC) scores. Since FPC scores

summarize how the functions fluctuate, we can substitute them for the functions and estimate

the resulting VAR with standard methods. Specifically, the functional PCA procedure is

summarized as follows.

Functional VAR

1. Density Estimation. Obtain consistent estimates of density functions, denoted by f̂t.

2. FPCA. Decompose the functions by functional principal component analysis, with

truncation order q

f̂t(u) =

q∑
j=1

η̂jtξ̂j(u) (2)

where η̂jt is the estimated FPC scores and ξ̂j the eigenfunctions.

3. SVAR Substitute the FPC scores for functions, leading to

yt
η̂t

 =

ayy ayη

aηy aηη


yt−1

η̂t−1

+

eyt
eηt

 . (3)
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where η̂t = [η̂1,t, . . . , η̂q,t]
′ is a q × 1 vector. Denote the estimated impulse responses of

η̂jt by θ̂h,j, then the responses of ft can be estimated by Θ̂h =
∑q

j=1 θ̂h,j ξ̂j.

The functional VAR procedure bears remarkable similarity to the two step estimation of

FAVAR in Bernanke et al. (2005). In particular, FAVAR characterizes a high dimensional

data matrix through a few factors, whereas FVAR summarizes the infinite dimensional func-

tions by a few FPC scores. Further, in the same way as FAVAR recovering the responses

of information variables by factor responses and static factor loadings, the FVAR estimates

functional responses by multiplying the responses of FPC scores and the static eigenfunc-

tions. As a whole, our approach extends FAVAR to the case when the cross-section dimension

of the data is infinite.

3 FVAR model and estimation

I now formalize the functional VAR model and provide details for estimation.

3.1 FVAR model

Assume that we observe data {(Y1, f1), . . . , (YT , fT )} where Yt is a K×1 vector of aggregates

and ft is a 1× 1 function on a separable Hilbert space. Consider a general FVAR(p) model

Yt =
∑p

i=1 Ψ11,iYt−i +
∑p

i=1 Ψ12,i(ft−i) + eyt

ft(u) =
∑p

i=1 Ψ21,i(u)Yt−i +
∑p

i=1 Ψ22,i(ft−1)(u) + eft(u)
(4)

where Ψ11,i is a K ×K matrix, Ψ21,i = (Ψ21,1, . . . ,Ψ21,K) is a 1×K vector of functions, and

Ψ12,i(ft−i) =
∫
ψ12,i(u)ft−i(u)du

Ψ22,i(ft−i)(u) =
∫
ψ22,i(u, v)ft−i(v)dv

. (5)

For ease of exposition, I assume that both Yt and ft have zero means and normalize the

domain u to [0, 1].
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Model (4) consists of two blocks: The first block is the scalar-on-function regressions

(Cardot et al., 1999; Hall and Horowitz, 2007; Shin, 2009) and the second falls into the

category of functional autoregressions (Bosq, 2000; Kokoszka and Reimherr, 2013). This

motivates the use of principal component regression methods (Ramsay and Silverman, 2005).

Specifically, define the covariance function of ft as γf (u, v) = E[f(u)f(v)] and the covari-

ance operator Γf is Γf (g) =
∫
γf (u, v)g(v)dv. The eigenfunctions {ξj}∞j=1 and the associated

eigenvalues {λj}∞j=1 are determined by

Γf (ξj)(u) =

∫
γf (u, v)ξj(v)dv = λjξj(u). (6)

Assume without loss of generality that the eigenfunctions are normalized to unit norm. Then

eigenfunctions {ξj}∞j=1 form an orthonormal basis in the functional space. We have

ft(u) =
∞∑
j=1

ηt,jξj(u) (7)

where the FPC scores ηt,j are given by ηt,j =
∫
ft(u)ξj(u)du. Importantly, the above decom-

position is optimal in the sense that for all orthonormal basis {ν1, ν2, . . . , νq},

T∑
t=1

∥∥∥∥∥ft(u)−
q∑

j=1

ηt,jνj(u)

∥∥∥∥∥
2

is minimized at {ξ1, . . . , ξq} for all q.

As in Section 2, applying the functional PCA to model (4) leads to

Yt =
∑p

i=1 Φ11,iYt−i +
∑p

i=1

∑∞
j=1 Φ12,i,jηt−i,j + eyt∑∞

j=1 ηt,jξj =
∑p

i=1

∑∞
j=1 Φ21,i,jξjYt−i

+
∑p

i=1

∑∞
j=1

∑∞
k=1 Φ22,i,jkηt−i,jξj +

∑∞
j=1 eηt,jξj

(8)
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which can be rewritten as



1 0

0 ξ1

0 ξ2

. . . . . .



′ Yt
ηt

 =



1 0

0 ξ1

0 ξ2

. . . . . .



′
Ψ11(L) Ψ12(L)

Ψ21(L) Ψ22(L)


Yt
ηt

+

eyt
eηt


 (9)

where ηt = [ηt,1, ηt,2, . . . ]
′ is a vector of FPC scores and Ψ·,·(L) are coefficient matrix, both of

which are infinite dimensional. Clearly, the population model cannot be estimated directly.

Instead, we truncate (7) at some order q, which leads to the truncated score VAR

1 0 . . . 0

0 ξ1 . . . ξq

 [I −Ψ(L)]

Yt
ηt


︸ ︷︷ ︸

(K+q)×1

=

1 0 . . . 0

0 ξ1 . . . ξq


eyt
eηt

 . (10)

Finally, I discuss briefly the identification of FVAR. Notice from (10) that

 eyt∑q
j=1 eηt,jξj

 =



1 0

0 ξ1

. . .

0 ξq



′ 

eyt

eηt,1

. . .

eηt,q


=



1 0

0 ξ1

. . .

0 ξq



′

B︸︷︷︸
(K+q)×(K+q)



ϵyt

ϵ1t

. . .

ϵqt


(11)

where ϵ·,t are structural shocks. Analogous to standard VAR, matrix B is the object to

be identified. Equations (10) and (11) demonstrate clearly that to construct the impulse

responses, we need only to focus on the score VAR. Suppose we want to recover the responses

of ft to the TFP shock ϵyt. Denote the first column of B as B1 = [byy, byη]
′, the response of

ηt,j to TFP shocks at horizon h is

θh,j ≜
∂ηt+h,j

∂ϵyt
= [I −Ψ(L)]hbyη,j (12)
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and the response of ft is

Θh ≜ ∂ft+h

∂ϵyt
=

∂

(∑∞
j=1 ηt+h,jξj

)
∂ϵyt

=
∞∑
j=1

∂ηt+h,j

∂ϵyt
ξj ≈

q∑
j=1

θh,jξj (13)

which can be estimated by plug in the estimates Â, B̂ and ξ̂j.

Although the current paper focuses on the general FVAR framework and leaves the

identification of functional shocks for future research, {ϵjt}qj=1 can be easily interpreted when

the eigenfunctions have structural interpretations (e.g., Benko, 2007).

3.2 Estimation

The formulations in the previous section assumes that both functions ft and the principal

components are perfectly observed. In practice, these objects need to be estimated.

First, we estimate the densities from the data. Note that ft is often defined on a bounded

support, e.g. salaries cannot be negative, rendering standard kernel density estimation incon-

sistent. One solution is to use the modified kernel density estimation proposed by Petersen

and Müller (2016). Specifically, let κ be a kernel that corresponds to a continuous probability

density function and h < 1/2 be the bandwidth. We can estimate the density from an i.i.d.

sample {x1, . . . , xN} by

f̂(u) =
N∑
l=1

κ

(
u− xl
h

)
w(u, h)

/ N∑
l=1

∫ 1

0

κ

(
v − xl
h

)
w(v, h)dv (14)

for u ∈ [0, 1] and 0 elsewhere. The weight function is designed to remove the boundary bias:

w(u, h) =



(∫ 1

−u/h
κ(v)dv

)−1

u ∈ [0, h)(∫ (1−u)/h

−1
κ(v)dv

)−1

u ∈ (1− h, 1]

1 o.w.

. (15)
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Second, to conduct functional PCA we estimate the covariance functions by the sample

analogue

γ̂(u, v) =
1

T

T∑
t=1

f̂t(u)f̂t(v). (16)

The eigenfunction ξj(u) is obtained by solving the eigen-equation

∫
γ̂(u, v)ξ̂j(v)dv = λ̂j ξ̂j(u) . (17)

Since the functions are infinite dimensional, the eigen-equation is in fact solved by discretizing

the covariance functions (Rice and Silverman, 1991). Given ξ̂j, the FPC scores are simply

the generalized Fourier coefficients when projecting f̂t on the eigenfunctions. Given the pair

of eigen-elements (λ̂j, ξ̂j) we need to truncate it at some order q. Several methods have

been proposed: For instance, it can be determined by the fraction of variation explained

(Ramsay and Silverman, 2005), leave-one-out cross-validation (Rice and Silverman, 1991) or

the information criterion (Yao et al., 2005; Li et al., 2013). Implementation of the above

steps is facilitated through the Functional Data Analysis (FDA) package.4

4 Asymptotic theory

This section establishes asymptotic properties of the functional VAR procedure. We start

by introducing a set of useful notations in Section 4.1. Section 4.2 discusses consistency of

the FVAR procedure . Proofs are given in Appendix A.

4.1 Notation

Denote by L2 the space of square integrable functions such that
∫
f(u)2du < ∞ for all

f ∈ L2. The space is associated with the inner product 〈f, g〉 =
∫
f(u)g(u)du for f, g ∈ L2,

and the norm ‖f‖ =
√

〈f, f〉 =
√∫

f 2(u)du. Moreover, denote by L the space of continuous

4The package is provided by Ramsay and Silverman (2005) and can be accessed here. An alternative
package PACE based on Yao et al. (2005) yields almost identical results.
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linear operators from L2 to L2. For all Ψ ∈ L, the uniform norm of the operators is

‖Ψ‖op = sup{‖Ψ(g)‖ : g ∈ L2 with ‖g‖ ≤ 1}, and the Hilbert-Schmidt norm is ‖Ψ‖HS =

(
∑∞

j=1‖Ψ(νj)‖2)1/2 where {νj}∞j=1 is any orthonormal basis in L2. Finally, denote f◦g : 〈f, ·〉g.

Then the covariance operator can be written as Γf = E[〈f, ·〉f ] = E[f ◦ f ].

Next, assume that all random variables are defined on some common probability space

(Ω,A, P ). A function f has p moments if (E‖f‖pL2)1/p <∞. Furthermore, we call a sequence

of ϵt ∈ L2 an H-white noise if it has zero mean Eϵt = 0, constant covariance Γϵt = Γϵ0 , and

are mutually uncorrelated ϵs ⊥ ϵt, ∀s 6= t.

Moreover, I collect the lags of model (4) as in Kokoszka and Reimherr (2013). Define

Ii(u) an indicator function that equals 1 if u ∈ ((i− 1)/p, i/p] and

Wt(u) =
∑p

i=1 ft−i(up− (i− 1))Ii(u)

ψ12(u) =
∑p

i=1 pψ12,i(up− (i− 1))Ii(u)

ψ22(u, v) =
∑p

i=1 pψ22,i(u, vp− (i− 1))Ii(v)

(18)

Ψ12(Wt) =

p∑
i=1

Ψ12,i(ft−i)

=

∫ 1

0

p∑
i=1

pIi(r)ψ12,i(rp− (i− 1))ft−i(rp− (i− 1))dr

Ψ22(Wt) =

p∑
i=1

Ψ22,i(ft−i)

=

∫ 1

0

p∑
i=1

pIi(r)ψ22,i(u, rp− (i− 1))ft−i(rp− (i− 1))dr

. (19)

Denote Zt = (Y ′
t−1, . . . , Y

′
t−p)

′, Ψ11 = (Ψ11,1, . . . ,Ψ11,p) and Ψ21 = (Ψ21,1, . . . ,Ψ21,p). The

dimensions are Kp × 1, K ×Kp and 1 ×Kp respectively. Then model (4) can be written

compactly as
Yt = Ψ11Zt +Ψ12(Wt) + eyt

ft = Ψ21Zt +Ψ22(Wt) + eft

(20)
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and in the matrix form

Y︸︷︷︸
K×T

= Ψ11 Z︸︷︷︸
Kp×1

+Ψ12( W︸︷︷︸
1×T

) + ey

f = Ψ21Z +Ψ22(W ) + ef

. (21)

The score VAR can be written similarly. To derive it, first denote the covariance operator

of Wt as ΓW . We have eigen-equation ΓW (ϕj) = ρjϕj where ρj is the eigenvalues and ϕj is

the eigenfunctions. Functional PCA on Wt gives the decomposition

Wt(u) =
∞∑
j=1

πt,jϕj(u) (22)

where πj are the FPC scores. Truncate (7) and (22) at order qf and qW respectively.5 Denote

ηt = (ηt,1, . . . , ηt,qf )
′ and πt = (πt,1, . . . , πt,qW )′. We have the score VAR6

Yt = Ψ11Zt +Ψ12π̂t + ěyt

η̂t = Ψ21Zt +Ψ22π̂t + ěηt

(23)

which in matrix form, is
Y = Ψ11Z +Ψ12π̂ + ěy

η̂ = Ψ21Z +Ψ22π̂ + ěη

. (24)

Here, I use ěy and ěη to explicitly indicates the additional errors due to truncation.

Applying the Frisch-Waugh-Lovell theorem, the functional VAR estimators are

Ψ̂11 = Y M̂πZ
′(ZM̂πZ

′)−1, Ψ̂12 = YMZ π̂
′(π̂MZ π̂

′)−1

Ψ̂21 = η̂M̂πZ
′(ZM̂πZ

′)−1, Ψ̂22 = η̂MZ π̂
′(π̂MZ π̂

′)−1
(25)

where M̂π = I− π̂′(π̂π̂′)−1π̂ and MZ = I−Z ′(ZZ ′)−1Z are T ×T residual makers. These are
5Note that we treat Wt and ft separately simply for ease of notations. In practice, we will use the p lags

of f̂t instead of Ŵt. Therefore, we have qW = qf ∗ p.
6With a bit abuse of notation, Ψ21 is a 1×Kp vector of functions in (20) whereas it stands for a qf ×Kp

matrix in the score VAR.
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the celebrated principal component estimators in the functional linear regression literature

(Cardot et al., 1999; Shin, 2009; Kokoszka and Reimherr, 2013). Moreover, we have

ψ̂12(u) =
∑qW

j=1 Ψ̂12[·, j]ϕ̂j(u), ψ̂21(u) =
∑qf

j=1 Ψ̂21[j, ·]ξ̂j(u)

ψ̂22(u, v) =
∑qf

j=1

∑qW
k=1 Ψ̂22[j, k]ξ̂j(u)ϕ̂k(v)

(26)

where Ψ̂12[·, j] is the j-th column of Ψ̂12, Ψ̂21[j, ·] is the j-th row of Ψ̂21 and Ψ̂22[j, k] is the

(j, k) element of Ψ̂22. We can easily recover operators in model (20) by (26). For instance,

Ψ̂12(Wt) =
∫ ∑qW

j=1 Ψ̂12[·, j]ϕ̂j(u)Wt(u)du, which gives a K × 1 vector.

4.2 Consistency

We are now ready to state the assumptions for consistency. Note that by construction,

assumptions made on ft applies to Wt. Specifically, I postulate that:

Assumption 1 (L4-m-approximable).

(i) The sequence {ft} ∈ L2 satisfies E‖f‖4 <∞.

(ii) ft is generated by ft = h(vt, vt−1, . . . ) where vt are i.i.d. error functions in some

measurable space S, and h is some measurable function h : S∞ 7→ H.

(iii) Let f (m)
t = h(vt, vt−1, . . . , vt−m+1, v

(t)
t−m, v

(t)
t−m−1, . . . ) where for each t, {v(t)s } is an inde-

pendent copy of {vs}. We have

∞∑
m=1

(
E‖fm − f (m)

m ‖4
) 1

4 <∞. (27)

Assumption 1 is introduced by Hörmann and Kokoszka (2010) which allows the density

functions to exhibit weak dependence. The idea is that for each {ft} we can find an auxiliary

sequence {f (m)
t } that is by construction m-dependent. Then {ft} will also be m-dependent as

it converges to {f (m)
t }. In this regard, the approximability assumption implies m-dependence

and thus stationarity.
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Specifically, it contains three parts. First, part 1(i) requires the functions to have finite

fourth moments, which is used to bound auto-correlations of L2 functions. In contrast, finite

second moments suffice to guarantee consistency for i.i.d. functions (see Hall and Hosseini-

Nasab, 2006). Second, 1(ii) presents the structural form of the random functions: It assumes

that the ft is generated by a general (possibly nonlinear) function of i.i.d. error functions.

Hence it includes a broader class of random functions than linear processes discussed in Bosq

(2000). Finally, 1(iii) introduces the auxiliary sequence, which is constructed by replacing

the noises {ϵt−j}j≥m with independent copies {ϵ(t)t−j}j≥m. The superscript (t) indicates that

the copies are drawn independently for each period t, implying that {f (m)
t } is m-dependent

and strictly stationary. Finally, equation (27) states that {ft} converges to the auxiliary

sequence and thus inherits dependency.

The next assumption imposes regularity conditions on the density functions and the ker-

nel used for estimation. Intuitively, it guarantees that the modified kernel density estimator

(14) is consistent.

Assumption 2 (Density Estimation).

(i) For all f ∈ F ⊂ L2, f is differentiable. Moreover, there is a positive constant M such

that M ≥ max{‖f‖∞, ‖1/f‖∞, ‖f ′‖∞} for all f ∈ F .

(ii) The kernel κ is of bounded variation and is symmetric about 0. Moreover, we have∫ 1

0
κ(u)du > 0, and

∫
R |u|κ(u)du,

∫
R κ

2(u)du and
∫
R |u|κ

2(u)du are finite.

(iii) For each period t, we have a random sample {x1, . . . , xN(t)}
i.i.d.∼ ft.

The assumption contains three parts. First, 2(i) assumed that the density functions are

continuously differentiable. Moreover, the density, its inverse and the first derivative are all

bounded, requiring that f(u) > 0 for all u ∈ [0, 1]. Second, 2(ii) includes a set of regularity

conditions on the kernel κ. In practice, common kernels such as the standard normal density

suffices. Finally, it is assumed that for each period we obtain a random sample drawn from
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the density function. Importantly, the condition is satisfied even though the densities across

time are dependent.

With the above assumptions, we can establish the consistency of functional PCA.

Proposition 1 (Consistent FPCA). Under Assumptions 1-2, we have

‖µ− µ̂‖ = Op

(
T−1/2

)
, ‖γf − γ̂f‖ = Op

(
T−1/2

)∣∣∣λk − λ̂k

∣∣∣ = Op

(
T−1/2

)
, ‖ξk − ξ̂k‖ = Op

(
T−1/2

) (28)

Two comments are in order. First, Proposition 1 states that even though the functions

are estimated, we still achieve root-T consistency comparable to Hörmann and Kokoszka

(2010). Importantly, as is shown in the proof, the results hold if the convergence of density

estimation is fast enough, i.e. O(h+ (Nh)−1) to be finite.

Second, the consistency holds for every k. Intuitively, the result suggests that if the

truncated (8) is the true model, then it is easy to show that the functional coefficients

are consistent. To bridge the gap between the truncated, finite dimensional VAR and the

population model, we introduce a final set of assumptions.

Assumption 3 (Truncation).

(i) The eigenvalues λi are mutually distinct and in decreasing order λ1 > λ2 > · · · > 0.

(ii) Denote αi = min{λi−1 − λi, λi − λi+1} for i ≥ 2 and α1 = λ1 − λ2. Further define

R1 = argmax{j ≥ 1 | λ̂j ≥ m−1
T } and R2 = argmax{k ≥ 1 | max1≤j≤k α̂j ≥ m−1

T }

where mT → ∞ such that m6
T = o(T ). The truncation order is set to be

q = min{R1, R2,mT}. (29)

Assumption 3 involves two conditions. The first part is a standard identification assump-

tion in the functional analysis literature (Cai and Hall, 2006; Hall and Horowitz, 2007). In
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particular, we require that λ1 > λ2 > · · · > 0. The second condition introduced by Hör-

mann and Kidziński (2014) illustrates how the functional PCA balances the bias variance

trade-off. Specifically, note that the eigenvalues measure the amount of variance explained

by the associated eigenfunctions. Hence an additional FPC is included only when it explains

a non-trivial portion of the functions, e.g. λ̂j ≥ m−1
T . Furthermore, it implies that the

truncation order tends to infinity as T → ∞.

Assumptions 1-3 guarantee that the functional PCA leads to accurate approximations of

the functions, and the projection errors converges to zero as the sample size goes to infinity.

However, so far we are silent about the regression itself. The following assumption imposes

regularity conditions on the functional VAR model.

Assumption 4 (Functional VAR).

(i) Yt is a stationary process and eyt is iid white noise with nonsingular covariance matrix

Σey such that eyt
iid∼ (0,Σey).

(ii) ψ12 and Ψ21 are square integrable functions, and Ψ22 is a Hilbert-Schmidt operator.

Further, the functional errors eft is an H-white noise.

The above assumptions are fairly standard the literature. Specifically, part 4(i)is com-

parable to the assumptions in Kilian and Lütkepohl (2017, Chapter 2). An alternative way

to formulate the stationarity condition (together with Assumption 1) is to impose restric-

tions on the coefficients (Kokoszka and Reimherr, 2013). The second part 4(ii) is standard

in the functional regression literature. In particular, requiring the operators to be Hilbert-

Schmidt, or assuming that the kernels reside in the L2 space guarantees that the operators are

bounded. Combined with Assumption 3(ii), the assumption ensures that the approximation

errors shrink to zero.

We are now ready to state the consistency results.
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Theorem 1 (Consistent FVAR). Under Assumptions 1-4, as T goes to infinity we have

vec(Ψ̂11)− vec(Ψ11)
p→ 0, ‖Ψ̂12 −Ψ12‖op

p→ 0

‖Ψ̂21 −Ψ21‖
p→ 0, ‖Ψ̂22 −Ψ22‖op

p→ 0
(30)

As is clear in Section 3, the impulse responses estimates are obtained by plugging in the

estimates for Ψ(L). Hence the consistency of the responses is implied by Theorem 1.

5 Simulation study

I conduct several simulation experiments to evaluate the finite sample performance of the

functional VAR procedure. The DGP used is model (1) where the reduced-form errors are

related to structural shocks through

eyt = σ11ϵ1t +
∫
σ12(u)ϵ2t(u)du

eft(u) = σ21(u)ϵ1t +
∫
σ22(u, v)ϵ2t(v)dv

(31)

which, rewritten as combinations of the basis functions, is equivalent to

eyt = σ11ϵ1t + σ12[
∫
ξ′(u)ξ(u)du]ϵ2t

eft(u) = ξ(u)σ′
21ϵ1t + ξ(u)σ22[

∫
ξ(v)′ξ(v)dv]ϵ2t

. (32)

Here, σ12 and σ21 are 1 × q vectors of scalar and σ22 is a q × q matrix, and ϵ1t, ϵ2t are

scalar structural shocks. Similar to what we have shown in Section 2, substitute the above

decomposition into the FVAR(1) model, we have

yt+1 = ayyyt + ayfηt + σ11ϵ1t + σ12ϵ2t

ξ(u)ηt+1 = ξ(u)a′fyyt + ξ(u)affηt + ξ(u)σ′
21ϵ1t + ξ(u)σ22ϵ2t

. (33)

The scalar shocks ϵ1t and ϵ2t are drawn independently from standard normal distributions.

Moreover, I generate instruments for ϵ1t by zt = ϵ1t + νt where νt ∼ N (0, 1) are i.i.d noises.
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The model is estimated using the internal instrument methods (Plagborg-Møller and Wolf,

2021). Specifically, the instrument is ordered first and the VAR is identified by Cholesky

decomposition. Finally, the responses are computed for H = 12 horizons.

I employ two set of parameters as summarized in Table 1, with the associated impulse

responses in Figure 1. As is clear, Design 1 yields standard “hump-shaped” IRs whereas

Design 2 yields more irregular responses. For each parameter set, I simulate the data for

2000 runs and T = 100, 200, 500 respectively. Moreover, the basis function ξ(u) is set to be

Fourier basis functions on [0, 1] of order three (q=3).

To evaluate how precise the FVAR procedure is, I report the mean integrated squared

errors (MISE) and uniform errors (UE) of the IRs for all horizons. Specifically, the MISE is

defined as

MISE(h) =
∫
u∈[0,1]

(Θh(u)− Θ̂h(u))
2du (34)

and the uniform errors

UE(h) = sup
u∈[0,1]

|Θh(u)− Θ̂h(u)|. (35)

Moreover, I report coverage rates using bootstrapped confidence bands.

Table 2 reports the results. Three patterns stand out. First, for Design 1 with the

hump-shaped responses, the errors of the IR estimates are limited, and decreasing as the

sample size increases. Second, the coverage rates are generally high, albeit lower than 95%.

Third, the results deteriorate significantly moving to Design 2, especially for horizons 5 to

8. As a comparison, I presents an example of estimates in Figure 2. It is evident that

the estimated IRs are more slow-moving than the truth. Hence FVAR may not be able to

estimate responses when the true IRs experience sharp jumps.
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6 Empirical application

In this section, I apply the functional FVAR approach to extend the results in Cloyne and

Surico (2017) and Anderson et al. (2016) to study the impact of tax shocks on income

inequality in the United Kingdom. I study tax policy for two reasons. First, it is generally

considered to be an important driver of income inequality meanwhile the trade-off between

economic growth and equality remains controversial (Coady and Gupta, 2012; Biswas et al.,

2017). Second, with the narrative shocks constructed by Cloyne (2013), I can study the

interaction of tax shocks and income distribution for four decades, which gives much greater

variations in the data.

Specifically, I study the effects of tax policy changes in the United Kingdom from 1968Q1

to 2009Q4. The baseline model is the VARX model as in Cloyne (2013). As is shown in (36),

Yt is a vector of aggregate variables including the log of real per capita GDP, consumption

and investment. t is the linear trend and the shock st is the tax policy changes based on

long-run considerations. By definition, st should be exogenous to both shocks at business

cycle frequency and equality concerns. Finally, B(L) and D(L) are lag polynomials with P

and Q lags.

Yt = C0 +C1t+B(L)Yt−1 +D(L)st + et (36)

The specification is superior to SVAR-IV alternative (Mertens and Ravn, 2013; Stock and

Watson, 2018; Plagborg-Møller and Wolf, 2021) as it allows for flexible lag structure, which

is particularly useful when the sample size is limited. However, alternative specifications

yield similar results.

Next model (36) is extended in two ways. First, I augment it with income density

functions of the UK households following the FVAR procedure outlined in Section 2. Second,

as a comparison I estimate the same model with commonly used inequality measures: 90-10

ratio, mean log deviation (MLD), Gini coefficient and Theil index. In all cases, I include

four lags of the dependent variables and 12 lags of the tax shocks, but the results are robust
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to different lag lengths.

In what follows I first discuss the data source, income density estimation and the FPCA

step in Section 6.1. Section 6.2 focuses on the SVAR analysis.

6.1 Functional analysis of inequality

The household income distributions are constructed using the Household Below Average

Income (HBAI) dataset, which is based on the Family Expenditure Survey (FES) from 1968

to 1993 and the Family Resource Survey (FRS) from 1994 onwards.7 The two surveys are

the most comprehensive sources of household income in the United Kingdom, and have

been extensively used to measure inequality (Goodman and Webb, 1994; Torry et al., 2019;

Xu et al., 2019). On average the FES interviewed 2,270 households every quarter, which is

expanded to 6,639 when FRS is adopted.8 To estimate income distributions, I use household-

level equivalized deflated weekly net income after deducting housing costs and adjusted for

under-reporting of the rich households. For instance, an observation with £500 should be

interpreted as a childless couple earning 500 pounds per week in 2018 prices. A brief overview

of data preprocessing is provided in Appendix B.

With repeated cross-section survey data, I estimate the income density function from

1968Q1 to 2018Q4. The estimated densities are shown in Figure 3. As panel 3(a) shows,

income distributions in the UK have experienced sizable fluctuations since 1968. Moreover,

there is a continuing trend of rising inequality —with the current distributions having much

fatter tails. Besides, the mean and median of the distributions also steadily shift upward, in-

dicating that households are better off than they were fifty years ago. Overall, the estimated

density functions are in line with previous findings (Cribb et al., 2016).

However, as Assumption 1 indicates, consistency for FPCA requires the functions to be
7The survey data are compiled and converted to harmonized income series by Institute for Fiscal Studies

(2020) and Department for Work and Pensions (2020) for FES and FRS respectively.
8The data for 1991Q2 are dropped due to confusions caused by new council tax, and data for 1994Q1 are

missing because of insufficient observations in the survey. For both periods, I interpolate income distributions
from adjacent periods.
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stationary. Therefore I detrend the density functions by removing a quadratic trend, which

is presented in panels 3(b) and 3(c). As we can see, the fluctuations of densities remain

sizable even after removing the trend. Furthermore, the fluctuations are moderated since

1990s, which coincides with the “Great Moderation” in the UK (Benati, 2008).

Next, I conduct functional principal component analysis to approximate the dynamics of

income distributions. Figure 4 presents a set of criteria for selecting the number of functional

principal components. First, the errors associated with FPCA decrease sharply with three

FPCs, and the gain from over five FPCs is negligible. This is consistent with the results

based on fraction of variations explained (FVE). The bottom panel shows that the first five

FPCs explain 97.7% of the variations explained. Given that, the order of eigenfunctions is

set to five. Finally, Figure 5 shows the density functions recovered by FPCA. As we can see,

the FPCs successfully capture the fluctuations of the income distributions.

6.2 Tax cuts and income distributions

I now turn to study the interaction between tax shocks and income distributions. To start

with, I report in Figure 6 the responses of aggregates in both the baseline and the FVAR

model. Two observations stand out. First, the exogenous tax cuts are unambiguously expan-

sionary: A one percentage point cut in taxes raises GDP by 2.6% in 10 quarters. Similarly,

consumption and investment also increase persistently. Overall, the estimates are similar to

Cloyne (2013). Second, including information about income distributions does not change

the results. In fact, the responses of the aggregates are almost identical.

Next, I recover the responses of income densities in Figure 7. Three comments are in

order. First, following a tax cut, there is a sizable decrease in the densities of households

with weekly income between £100 and £300, compensated by an unambiguous increase in

densities of the rich with weekly income above 300 pounds. The result suggests that the

lower-middle-class households are better off after tax cuts.9 One potential explanation is
9Note that median households income exceeded 300 pounds only after 1995Q1.
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that tax cuts boost the economy and thus even poor households benefit through general

equilibrium effects, e.g. stronger demand and higher wages (Cloyne, 2013).

Second, the increased density of the extremely poor (with weekly income below 50

pounds) does raise equality concerns for such policy. One potential channel is that tax cuts

induce lower social securities which disproportionately hit the extremely poor. However,

without detailed data on social security spending, it is difficult to test the channel.

Third, we may want to understand the contribution of tax shocks to the evolution of

income distributions. To do so, I simulate the FVAR model by keeping only the tax shocks.

Figure 8 contrasts the actual density dynamics with the simulated series. Perhaps surpris-

ingly, the simulated densities follow the actual ones extremely even without other economic

shocks. Moreover, the magnitude of the fluctuations is about half of the data. Overall, it

suggests that tax shocks account for a non-negligible part of the income dynamics.

Taken together, the FVAR analysis demonstrates the distinct trade-off between economic

booms and equality concerns of tax policy. Moreover, tax cuts are important in explaining

the evolution of income distributions.

However, the above findings may be missed with conventional measures of inequality. To

see that, I report in Figure 9 the responses of inequality measures using the same model.

Clearly, all three inequality measures increase persistently following the expansionary tax

shocks. We may therefore conclude that tax cuts are harmful for the poor households.

However, as Figure 7(b) suggests, even though conventional inequality indicators increase

due to the shrinking middle class, lower middle households in fact benefit from the cuts. Put

it differently, standard inequality metrics provide little information on how different parts of

the income distribution respond, and may result in misleading conclusions.

22



7 Conclusion

This paper introduces a method to estimate a VAR model with functional variables. Taking

advantage of recent developments in functional principal component analysis (FPCA), the

functional VAR model is able to reduce the dimension of functions while preserving valuable

information. Moreover, the FVAR model can be easily estimated by three steps similar to

the FAVAR model, and standard identification and estimation techniques can be applied.

In the empirical application, I apply the functional VAR approach to study the impact

of tax shocks on income distributions in the United Kingdom. I find that exogenous tax cuts

have heterogeneous effects on households depending on the income level. Even though the

extremely poor households are hit adversely, a large fraction of lower middle class households

benefit from the cuts. Moreover, tax policy changes account for a significant portion of the

cyclical evolution in the income distributions. Importantly, the findings are ignored when

density functions are replaced by conventional inequality measures.

The paper also raises several promising research avenues for the future. First, it is in-

teresting to evaluate the relative forecasting performance of the proposed FVAR models

with conventional small-scale VARs. Second, FVAR facilitates the study of “distributional

shocks” in driving aggregate fluctuations. Both possibilities speak directly to the core im-

plications of theoretical heterogeneous agent models and thus can provide valuable insights

in macroeconomic modeling and policy making.
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Appendix A Proofs

The proof consists of two parts. First, Section A.1 establishes the classical results of func-

tional principal component analysis in the current setup. Second, Section A.2 provides the

consistency of the FVAR estimator. Throughout, (̃·) indicates infeasible estimators with

perfectly observed functions. For instance,

µ̃(u) =
1

T

T∑
t=1

ft(u), γ̃(u, v) =
1

T

T∑
t=1

ft(u)ft(v)− µ̃(u)µ̃(v) . (37)

Moreover, Section A.1 deals with general functions that satisfy Assumption 1-2 and I do not

distinguish between ft and Wt.

A.1 Proposition 1

Four lemmas are used to prove Proposition 1. Lemmas 1 and 2 are Lemmas 4.2 and 4.3 in

Bosq (2000). The two lemmas bound the eigen-elements by the norm of covariance operators,

which is further bounded by the Hilbert-Schmidt norm. To apply the lemmas, we use the

fact that the covariance operator Γ is a symmetric, positive-definite Hilbert-Schmidt operator

(Horváth and Kokoszka, 2012). Formally, we define Hilbert-Schmidt operators as follows.

Definition 1. An operator A is called Hilbert-Schmidt if it admits a decomposition with

orthonormal bases {ei} and {vi} such that

A(f) =
∞∑
i=1

ai〈f, ei〉vi

and
∑∞

i=1 ai <∞ for all f ∈ H. Denote the space of Hilbert-Schmidt operators by HS. We

have norm ‖A‖HS =
√∑∞

j=1 a
2
i .

Lemma 3 is taken from Hörmann and Kokoszka (2010) where they extend standard

consistency to the case with weakly dependent functions. With this lemma, we can focus on
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the difference between our estimator and the infeasible counterparts, e.g. γ̂ − γ̃. To bound

the difference, I rely on Lemma 4 on the consistency of the density estimation, which is taken

from Petersen and Müller (2016). Specifically, we have

Lemma 1 (Bounded Eigenvalues). Let A0 ∈ A be a compact linear operator on the Hilbert

space with spectral decomposition

A0(f) =
∞∑
i=1

a0,i〈f, e0,i〉v0,i. (38)

Then

a0,i = min
A∈Ai−1

‖A− A0‖op, i ≥ 1 (39)

where Ai−1 = {A : A ∈ A, dimA(f) ≤ i − 1}. Moreover, given another compact linear

operator A1(f) =
∑∞

i=1 a1,i〈f, e1,i〉v1,i, we have

|ai,1 − ai,0| ≤ ‖A1 − A0‖op, i ≥ 1. (40)

Lemma 2 (Bounded Eigenfunctions). For covariance operator Γ and eigen-elements such

that Γ(ξi) = λiξi, and the estimates Γ̃(ξ̃i) = λ̃iξ̃i, we have

‖ξi − ξ̃i‖ ≤ αi‖Γ− Γ̃‖op. (41)

Lemma 3 (Perfectly Observed Functions). Under Assumption 1, we have

‖µ− µ̃‖ = Op

(
T−1/2

)
‖γ − γ̃‖ = Op

(
T−1/2

) (42)

.

Lemma 4 (Consistent Density Estimation). Under Assumption 2 with the modified kernel
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density estimator (14) satisfies f̂ > 0,
∫ 1

0
f̂(x)dx = 1, we have

sup
f∈F

E
(
‖f − f̂‖2

)
= O(h2 + (Nh)−1) (43)

whenever h→ 0 and Nh→ ∞ as N → ∞. N is the number of i.i.d. observations.

Finally, for future usage I list the inequalities that are repeatedly used here:

Eab ≤
√
Ea2

√
Eb2 (44)

|ab− cd|2 ≤ 2a2(b− d)2 + 2d2(a− c)2 (45)

(a+ b)1/2 ≤ a1/2 + b1/2 (46)[∫
f(x)g(x)dx

]2
≤
∫
f(x)2dx

∫
g(x)2dx (47)

Proof. (Proposition 1)

For illustrative purpose, let us focus on the second line as the proofs of the first two lines are

almost identical. Moreover, to simplify notation here I assume that µ̃ = 0, but the proofs

does not change with non-zero means. In this case we have

γ̃(u, v) =
1

T

T∑
t=1

ft(u)ft(v), γ̂(u, v) =
1

T

T∑
t=1

f̂t(u)f̂t(v). (48)

By triangle inequality,

‖γ − γ̂‖ = ‖γ − γ̃ + γ̃ − γ̂‖ ≤ ‖γ − γ̃‖︸ ︷︷ ︸
Op(T−1/2)

+‖γ̃ − γ̂‖ (49)

where the first term is Op(T
−1/2) by Lemma 3. We only need to bound the second term on

the RHS. Specifically,

TE‖γ̃ − γ̂‖2
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=T

∫∫
E

 1

T

T∑
t=1

(ft(u)ft(v)− f̂t(u)f̂t(v))︸ ︷︷ ︸
denoted by Xt

2

dudv.

=
1

T

∫∫ (
E[X2

1 ] + E[X1X2] + · · ·+ E[X1XT ] + . . .

E[XTX1] + E[XTX2] + · · ·+ E[X2
T ]

)
dudv

=
1

T

∫∫ (
TE[X2

1 ] + 2(T − 1)E[X1X2] + · · ·+ 2E[X1XT ]

)
dudv

≤
∫∫

E[X2
1 ]dudv︸ ︷︷ ︸

term 1⃝

+2 ∗ 1 ∗
T−1∑
p=1

∫∫
E[X1X1+p]dudv︸ ︷︷ ︸
term 2⃝

(50)

where the third equality comes from the assumption that Xt is m-dependent and station-

ary (e.g. E[X2X3] = E[X1X2]). Moreover, the expectation commutes with the integral

operators.

Consider first term 1⃝. We have

∫∫
E[X2

1 ]dudv = E

∫∫
[f1(u)f1(v)− f̂1(u)f̂1(v)]

2dudv . (51)

Note that

[f1(u)f1(v)− f̂1(u)f̂1(v)]
2

=

(
f1(u)[f1(v)− f̂1(v)] + [f1(u)− f̂1(u)][f̂1(v)− f1(v)]

+ [f1(u)− f̂1(u)]f1(v)

)2

=f1(u)
2[f1(v)− f̂1(v)]

2 + [f1(u)− f̂1(u)]
2[f̂1(v)− f1(v)]

2

+ [f1(u)− f̂1(u)]
2f1(v)

2 + 2f1(u)[f1(v)− f̂1(v)][f1(u)− f̂1(u)]f1(v)

− 2f1(u)[f1(v)− f̂1(v)]
2[f1(u)− f̂1(u)]

+ 2[f1(u)− f̂1(u)]
2[f̂1(v)− f1(v)]f1(v) . (52)
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Integrating the first three terms,

∫∫
f1(u)

2[f1(v)− f̂1(v)]
2dudv

=

∫
f1(u)

2du

∫
[f1(v)− f̂1(v)]

2dv = ‖f1‖2‖f1 − f̂1‖2

and similarly

∫∫
[f1(u)− f̂1(u)]

2[f̂1(v)− f1(v)]
2dudv = ‖f1 − f̂1‖4∫∫

[f1(u)− f̂1(u)]
2f1(v)

2dudv = ‖f1‖2‖f1 − f̂1‖2

Next, the last two terms cancel out when taking integrals. Specifically,

− 2

∫∫
f1(u)[f1(v)− f̂1(v)]

2[f1(u)− f̂1(u)]dudv

=2

∫
f1(u)[f̂1(u)− f1(u)]du

∫
[f1(v)− f̂1(v)]

2dv

whereas the last line is

2

∫∫
[f1(u)− f̂1(u)]

2[f̂1(v)− f1(v)]f1(v)dudv

=2

∫
f1(u)[f1(u)− f̂1(u)]du

∫
[f1(v)− f̂1(v)]

2dv

Hence the only remaining term is

2

∫∫
f1(u)[f1(v)− f̂1(v)][f1(u)− f̂1(u)]f1(v)dudv

=2

(∫
f1(u)[f1(u)− f̂1(u)]du

)2

≤2

∫
f1(u)

2du

∫
[f1(u)− f̂1(u)]

2du = 2‖f1‖2‖f1 − f̂1‖2 (53)
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where we use the integral inequality (47). Combing all the terms in (51), we have

∫∫
E[X2

1 ]dudv ≤ E4‖f1‖2‖f1 − f̂1‖2 + ‖f1 − f̂1‖4

= E‖f1 − f̂1‖2(4‖f1‖2 + ‖f1 − f̂1‖2). (54)

Next consider term 2⃝. We first define an auxiliary

X
(p)
1+p = f

(p)
1+p(u)f

(p)
1+p(v)− f̂

(p)
1+p(u)f̂

(p)
1+p(v).

Then we have
E[X1X1+p] = E[X1(X1+p −X

(p)
1+p)] + E[X1X

(p)
1+p]︸ ︷︷ ︸

=0

≤
√
EX2

1

√
E(X1+p −X

(p)
1+p)

2

(55)

Note that

(
X1+p −X

(p)
1+p

)2

=

(
f1+p(u)f1+p(v)− f

(p)
1+p(u)f

(p)
1+p(v) + f̂

(p)
1+p(u)f̂

(p)
1+p(v)− f̂1+p(u)f̂1+p(v)

)2

≤2

(
f1+p(u)f1+p(v)− f

(p)
1+p(u)f

(p)
1+p(v)

)2

+ 2

(
f̂
(p)
1+p(u)f̂

(p)
1+p(v)− f̂1+p(u)f̂1+p(v)

)2

(56)

So (55) can be expanded to two terms, using inequality (46):

√
EX2

1

√
2E(f1+p(u)f1+p(v)− f

(p)
1+p(u)f

(p)
1+p(v))

2 (57)

√
EX2

1

√
2E(f̂1+p(u)f̂1+p(v)− f̂

(p)
1+p(u)f̂

(p)
1+p(v))

2 (58)

The bounds of these terms are obtained in similar ways. Consider for instance (57).
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Using inequality (45) and (46), we have

√
EX2

1

√
2E(f1+p(u)f1+p(v)− f

(p)
1+p(u)f

(p)
1+p(v))

2

≤
√
EX2

1

√
4Ef 2

1+p(u)(f1+p(v)− f
(p)
1+p(v))

2

+
√
EX2

1

√
4Ef

(p)
1+p

2
(v)(f1+p(u)− f

(p)
1+p(u))

2.

Therefore, summing over (T − 1) terms, we have

T−1∑
p=1

∫∫ √
EX2

1

√
2E(f1+p(u)f1+p(v)− f

(p)
1+p(u)f

(p)
1+p(v))

2dudv

≤
∞∑
p=1

∫∫ √
EX2

1

√
2E(f1+p(u)f1+p(v)− f

(p)
1+p(u)f

(p)
1+p(v))

2dudv

≤2
∞∑
p=1

∫∫ √
EX2

1

√
Ef 2

1+p(u)(f1+p(v)− f
(p)
1+p(v))

2dudv

+ 2
∞∑
p=1

∫∫ √
EX2

1

√
Ef

(p)
1+p

2
(v)(f1+p(u)− f

(p)
1+p(u))

2dudv (59)

The two parts share the same upper bound. For instance, we have for the first part

2
∞∑
p=1

∫∫ √
EX2

1

√
Ef 2

1+p(u)(f1+p(v)− f
(p)
1+p(v))

2dudv

≤2
∞∑
p=1

[∫∫
EX2

1dudv

]1/2 [∫∫
Ef 2

1+p(u)(f1+p(v)− f
(p)
1+p(v))

2dudv

]1/2
=2

∞∑
p=1

[∫∫
EX2

1dudv

]1/2 [
E

∫
f 2
1+p(u)du

∫
(f1+p(v)− f

(p)
1+p(v))

2dv

]1/2

≤2
∞∑
p=1

[ ∫∫
EX2

1dudv

]1/2 [
E

(∫
f 2
1+p(u)du

)2
]1/4 [

E

(∫
(f1+p(v)− f

(p)
1+p(v))

2dv

)2
]1/4

=2

[ ∫∫
EX2

1dudv

]1/2[
E‖f‖4

]1/4 ∞∑
p=1

[
E‖f1+p − f

(p)
1+p‖

]1/4
(60)

where we have used (47) and (46). Importantly, the infinite sum on the RHS is finite by
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Assumption 1. That is, the term with (57) is bounded by

4

[ ∫∫
EX2

1dudv

]1/2[
E‖f‖4

]1/4 ∞∑
p=1

[
E‖f1+p − f

(p)
1+p‖

]1/4
.

In exactly the same way we bound (58) by

4

[ ∫∫
EX2

1dudv

]1/2[
E‖f̂‖4

]1/4 ∞∑
p=1

[
E‖f̂1+p − f̂

(p)
1+p‖

]1/4
.

To see the above bound is finite, note that by Lemma 4

‖f̂‖ = ‖f‖+O(
√
h2 + (Nh)−1) . (61)

When h→ 0 and Nh→ ∞ we have ‖f̂‖ = ‖f‖+ o(1). In this case the above bound is finite

following Assumption 1.

Taken together, (55) is bounded by

[ ∫∫
EX2

1dudv

]1/2
∗M (62)

where M is a finite constant given by

M = 4

([
E‖f‖4

]1/4 ∞∑
p=1

[
E‖f1+p − f

(p)
1+p‖

]1/4
+

[
E‖f̂‖4

]1/4 ∞∑
p=1

[
E‖f̂1+p − f̂

(p)
1+p‖

]1/4)
.

Combining the two terms 1⃝ and 2⃝, we have

TE‖γ̃ − γ̂‖2 ≤
∫∫

E[X2
1 ]dudv + 2M

[ ∫∫
EX2

1dudv

]1/2
. (63)

By (54) and Lemma 4, the RHS would be finite, with the order of magnitude depending on
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the number of observations N(t) and the bandwidth h. Therefore,

‖γ̃ − γ̂‖2 = Op(T
−1/2) (64)

and we prove the root-T consistency of the covariance function:

‖γ − γ̂‖2 = Op(T
−1/2). (65)

Finally, let us prove the last two lines. As Hörmann and Kokoszka (2010) show, both

γ̂(·, ·) and γ(·, ·) are Hilbert-Schmidt kernels, we have Γ̂ − Γ is a Hilbert-Schmidt operator

with kernel γ̂(u, v)− γ(u, v). Moreover, it is easy to verify that

‖Γ− Γ̂‖2HS = ‖γ − γ̂‖2. (66)

Now by Lemma 1, we have

E|λk − λ̂k|2 ≤ E‖Γ− Γ̂‖2op ≤ E‖Γ− Γ̂‖2HS (67)

which implies the third line. Similarly, by Lemma 2, we have

E‖ξi − ξ̂i‖2 = E‖ξi − ξ̆i‖2 ≤ αiE‖Γ− Γ̃‖2op ≤ αiE‖Γ− Γ̃‖2HS (68)

which implies the last line.

■

A.2 Consistency

To facilitate the proof, it is useful to start with a simple scalar-on-function regression.

Lemma 5 states that in our setup with weak dependency and estimated densities, the func-

tional operator can still be consistently estimated. Then I break down Theorem 1 into four
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lemmas from Lemma 6 to 9.

Lemma 5. With a bit abuse of notation, consider the model

Zt = A(Wt) + Ut. (69)

where Ut is i.i.d. white noise. Under Assumption 1-3, we have

‖A− ÂqW ‖op
p→ 0, with ÂqW =

qW∑
j=1

ϕ̂j ◦
Γ̂WZ(ϕ̂j)

ρ̂j
. (70)

Lemma 6.

vec(Ψ̂11)− vec(Ψ11)
p→ 0 (71)

Lemma 7.

‖Ψ̂12 −Ψ12‖op
p→ 0 (72)

Lemma 8.

‖Ψ̂21 −Ψ21‖
p→ 0 (73)

Lemma 9.

‖Ψ̂22 −Ψ22‖op
p→ 0 (74)
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Proof. (Lemma 5)

To start with, notice that

A =
∞∑
j=1

ϕj ◦
ΓWZ(ϕj)

ρj
. (75)

We have

‖ÂqW − A‖op

≤
∥∥∥∥ qW∑

j=1

(
ϕ̂j ◦

Γ̂WZ(ϕ̂j)

ρ̂j
− ϕ̂j ◦

ΓWZ(ϕ̂j)

ρ̂j

)∥∥∥∥
op

+

∥∥∥∥ qW∑
j=1

(
ϕ̂j ◦

ΓWZ(ϕ̂j)

ρ̂j
− ϕ̂j ◦

ΓWZ(ϕ̂j)

ρj

)∥∥∥∥
op

+

∥∥∥∥ qW∑
j=1

(
ϕ̂j ◦

ΓWZ(ϕ̂j)

ρj
− ϕj ◦

ΓWZ(ϕj)

ρj

)∥∥∥∥
op

+

∥∥∥∥ qW∑
j=1

ϕj ◦
ΓWZ(ϕj)

ρj
−

∞∑
j=1

ϕj ◦
ΓWZ(ϕj)

ρj

∥∥∥∥
op

.

Denote the four terms on the right hand side by M1,M2,M3,M4 respectively. We want to

show that they are all op(1).

First consider term M1. We have

P
(
M2

1 > ϵ
)

=P

(∥∥∥∥ qW∑
j=1

〈ϕ̂j, ϕ̂j〉
(Γ̂WZ − ΓWZ)(ϕ̂j)

ρ̂j

∥∥∥∥2
L2

> ϵ

)

=P

(
qW∑
j=1

∥∥∥∥(Γ̂WZ − ΓWZ)(ϕ̂j)

ρ̂j

∥∥∥∥2
L2

> ϵ

)

≤P

(
1

ρ̂2qW

qW∑
j=1

∥∥∥∥(Γ̂WZ − ΓWZ)(ϕ̂j)

∥∥∥∥2
L2

> ϵ

)

≤P

(
1

ρ̂2qW

∞∑
j=1

∥∥∥∥(Γ̂WZ − ΓWZ)(ϕ̂j)

∥∥∥∥2
L2

> ϵ

)

39



≤P

(
m2

T

∥∥∥∥Γ̂WZ − ΓWZ

∥∥∥∥2
op

> ϵ

)
≤ E‖Γ̂WZ − ΓWZ‖2op

m2
T

ϵ
.

Specifically, the first line comes from the definition of operator norm and the fact that {ϕ̂j}

are othonormal. The second line uses Assumption 3(i) that eigenvalues are in decreasing

order and the second last inequality uses Assumption 3(ii). Finally, the last inequality is

obtained by the Markov inequality. Note that in the proof of Proposition 1, I show that

TE‖Γ̂f − Γf‖2op ≤ C where C is some constant. In the same way, we have

TE‖Γ̂WZ − ΓWZ‖2op ≤ C (76)

and thus

P
(
M2

1 > ϵ
)
≤ C

T

m2
T

ϵ
. (77)

Next consider M2. We have

P(M2
2 > ϵ)

≤P

(
qW∑
j=1

∥∥∥∥ΓWZ(ϕ̂j)

(
1

ρ̂j
− 1

ρj

)∥∥∥∥2
L2

> ϵ

)

≤P

(
max

1≤j≤qW

(
ρ̂j − ρj
ρ̂jρj

)2 ∞∑
j=1

‖ΓWZ(ϕ̂j)‖2 > ϵ

)

≤P

(
1

ρ̂2qW
max

1≤j≤qW

(
ρ̂j − ρj
ρj

)2

‖ΓWZ‖2op > ϵ

)

≤P

(
max

1≤j≤qW

∣∣∣∣ ρ̂j − ρj
ρj

∣∣∣∣ >√ ϵ

m2
T‖ΓWZ‖2op

)

≤P

(
max

1≤j≤qW
|ρ̂j − ρj| >

1

2mT

√
ϵ

m2
T‖ΓWZ‖2op

)

+ P

({
1

ρqW
max

1≤j≤qW
|ρ̂j − ρj| >

√
ϵ

m2
T‖ΓWZ‖2op

}
⋂ {

max
1≤j≤qW

|ρ̂j − ρj| ≤
1

2mT

√
ϵ

m2
T‖ΓWZ‖2op

})
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The derivation uses the same trick as before. Consider the first term in the last inequality

P

(
max

1≤j≤qW
|ρ̂j − ρj| >

1

2mT

√
ϵ

m2
T‖ΓWZ‖2op

)

≤P

(
‖Γ̂f − Γf‖op >

1

2mT

√
ϵ

m2
T‖ΓWZ‖2op

)

≤E‖Γ̂f − Γf‖2op
4m4

T‖ΓWZ‖2op
ϵ

≤C
T

4m4
T‖ΓWZ‖2op
ϵ

where again we use Markov inequality and Proposition 1. For the second term we note that

it is upper bounded by

P

(
1

2mT

> ρqW
⋂

|ρ̂qW − ρqW | ≤ 1

2mT

√
ϵ

m2
T‖ΓWZ‖2op

)
p→ 0 . (78)

To see that, notice that
√

ϵ
m2

T ∥ΓWZ∥2op
goes to zero because ϵ is an arbitrarily small number

while mT → ∞ as T goes to infinity. Moreover, by Assumption 3(ii) we have ρ̂qW > 1
mT

and

we require |ρ̂qW − ρqW | shrinks at a rate faster than 1
2mT

. In this case ρqW > 1
2mT

and thus

the above probability converges to zero. Taken together, we have

P(M2
2 > ϵ) ≤ C

T

4m4
T‖ΓWZ‖2HS

ϵ
. (79)

As for M3, note that

ϕ̂j ◦ ΓWZ(ϕ̂j)− ϕj ◦ ΓWZ(ϕj) = ϕ̂j ◦ ΓWZ(ϕ̂j − ϕj) + (ϕ̂j − ϕj) ◦ ΓWZ(ϕj). (80)

Therefore,

P(M3 > ϵ)
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=P

(∥∥∥∥ qW∑
j=1

1

ρj

(
ϕ̂j ◦ ΓWZ(ϕ̂j − ϕj) + (ϕ̂j − ϕj) ◦ ΓWZ(ϕj)

)∥∥∥∥
op

> ϵ

)

≤P

(
qW∑
j=1

1

ρj

(∥∥∥∥ϕ̂j ◦ ΓWZ(ϕ̂j − ϕj)

∥∥∥∥
op

+

∥∥∥∥(ϕ̂j − ϕj) ◦ ΓWZ(ϕj)

∥∥∥∥
op

)
> ϵ

)

≤P

(
qW∑
j=1

2

ρj
‖ϕ̂j − ϕj‖L2‖ΓWZ‖op > ϵ

)

≤P

(
1

ρqW

qW∑
j=1

‖ϕ̂j − ϕj‖L2 >
ϵ

2‖ΓWZ‖op

)

≤P

(
qW∑
j=1

‖ϕ̂j − ϕj‖L2 >
ϵ

4mT‖ΓWZ‖op

)
+ P

(
1

ρqW
> 2mT

)
. (81)

The first two lines above are straightforward. The third line is obtained by the definition of

operator norm. For example, we have

∥∥∥∥ϕ̂j ◦ ΓWZ(ϕ̂j − ϕj)

∥∥∥∥
op

=sup

{∥∥∥∥〈ϕ̂j, g〉ΓWZ(ϕ̂j − ϕj)

∥∥∥∥
L2

, ∀‖g‖ ≤ 1

}
=‖ΓWZ(ϕ̂j − ϕj)‖L2 ≤ ‖ΓWZ‖op‖ϕ̂j − ϕj‖L2 . (82)

The last two inequalities use the same trick as before. Next we have

P

(
qW∑
j=1

‖ϕ̂j − ϕj‖L2 >
ϵ

4mT‖ΓWZ‖op

)

≤P
(
mT max

1≤j≤R2

‖ϕ̂j − ϕj‖L2 >
ϵ

4mT‖ΓWZ‖op

)
≤P

(
mT max

1≤j≤R2

2
√
2

α̂j

‖Γ̂f − Γf‖op >
ϵ

4m2
T‖ΓWZ‖op

)

≤P
(
‖Γ̂f − Γf‖op >

ϵ

8
√
2m3

T‖ΓWZ‖op

)
≤E‖Γ̂f − Γf‖2op128‖ΓWZ‖2op

m6
T

ϵ2
≤ C

T

128‖ΓWZ‖2opm6
T

ϵ2
(83)
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and

P
(

1

ρqW
> 2mT

)
≤P

(
1

ρqW
> 2mT

⋂
|ρ̂qW − ρqW | ≤ 1

2mT

)
︸ ︷︷ ︸

=0

+P
(
|ρ̂qW − ρqW | > 1

2mT

)

≤P
(
‖Γ̂f − Γf‖op >

1

2mT

)
≤ E‖Γ̂f − Γf‖2op4m2

T ≤ C

T
4m2

T . (84)

Combing the two terms, we have

P(M3 > ϵ) ≤ C

T

(
128‖ΓWZ‖2opm6

T

ϵ2
+ 4m2

T

)
. (85)

Finally let us bound M4. Since the operator is bounded. Therefore, for an arbitrarily

small positive number ϵ, we can always find a qϵ that is large enough such that

‖A− Aqϵ‖2op =
∑
j>qϵ

‖A(νj)‖2L2 < ϵ. (86)

Given that, we have

P
(
‖A− AqW ‖2op > ϵ

)
≤ P (qW ≤ qϵ) . (87)

Now combine the bounds (77),(79),(85) and (87), we have

P
(
‖ÂqW − A‖op > ϵ

)
≤C
T

(
m2

T

ϵ
+

4m4
T‖ΓWZ‖2op
ϵ

+
128‖ΓWZ‖2opm6

T

ϵ2
+ 4m2

T

)
+ P (qW ≤ qϵ)

which is op(1) if m6
T = op(T ) and qW → ∞. ■

Proof. (Lemma 6)

Denote Ψ12(W ) = [Ψ12(W1), . . . ,Ψ12(WT )] a K×T matrix. Then Y = Ψ12Z+Ψ12(W )+ ey.
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We have

Ψ̂11 = [Ψ12Z +Ψ12(W ) + ey]M̂πZ
′(ZM̂πZ

′)−1

= Ψ12 +

(
1

T

T∑
t=1

Ψ12(Wt)

[
Z ′

t −
qW∑
j=1

〈Ŵt, ϕ̂j〉Γ̂WZ(ϕ̂j)
′

ρ̂j

])(
ZM̂πZ

′

T

)−1

+

(
1

T

T∑
t=1

eyt

[
Z ′

t −
qW∑
j=1

〈Ŵt, ϕ̂j〉Γ̂WZ(ϕ̂j)
′

ρ̂j

])(
ZM̂πZ

′

T

)−1

(88)

where M̂π = I − π̂′(π̂π̂′)−1π̂ is the residual maker.

Consistency requires that

ZM̂πZ
′

T
=

(
Γ̂Z −

qW∑
j=1

Γ̂WZ(ϕ̂j)Γ̂WZ(ϕ̂j)
′

ρ̂j

)
p→ ΩZπZ (89)

where ΩZπZ is

ΩZπZ = ΓZ −
∞∑
j=1

ΓWZ(ϕj)ΓWZ(ϕj)
′

ρj
(90)

which is positive definite, together with

1

T

T∑
t=1

Ψ12(Wt)

[
Z ′

t −
qW∑
j=1

〈Ŵt, ϕ̂j〉Γ̂WZ(ϕ̂j)
′

ρ̂j

]
= op(1) (91)

and
1

T

T∑
t=1

eyt

[
Z ′

t −
qW∑
j=1

〈Ŵt, ϕ̂j〉Γ̂WZ(ϕ̂j)
′

ρ̂j

]
= op(1). (92)

The proof hence proceeds in three steps.

Step 1. Notice that

∥∥∥∥Γ̂Z −
qW∑
j=1

Γ̂WZ(ϕ̂j)Γ̂WZ(ϕ̂j)
′

ρ̂j
−

(
ΓZ −

∞∑
j=1

ΓWZ(ϕj)ΓWZ(ϕj)
′

ρj

)∥∥∥∥
≤‖Γ̂Z − ΓZ‖+

∥∥∥∥ qW∑
j=1

Γ̂WZ(ϕ̂j)Γ̂WZ(ϕ̂j)
′

ρ̂j
−

∞∑
j=1

ΓWZ(ϕj)ΓWZ(ϕj)
′

ρj

∥∥∥∥
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=‖Γ̂Z − ΓZ‖+
∥∥∥∥AqW (

1

T

T∑
t=1

ŴtZ
′
t)− A(EWtZ

′
t)

∥∥∥∥ (93)

where the second line comes from the triangle inequality and the third line uses the definition

of AqW defined in Lemma 5. To see this, note that

AqW (
1

T

T∑
t=1

ŴtZ
′
t) =

qW∑
j=1

Γ̂WZ(ϕ̂j)〈ϕ̂j,
1
T

∑T
t=1 ŴtZ

′
t〉

ρ̂j
=

qW∑
j=1

Γ̂WZ(ϕ̂j)
1
T

∑T
t=1〈ϕ̂j, Ŵt〉Z ′

t

ρ̂j
.

We study the two terms above separately. The first term is op since

1

T

T∑
t=1

ZtZ
′
t

p→ EZtZ
′
t (94)

by law of large numbers. By add and subtract, the second term becomes

∥∥∥∥(AqW − A)(
1

T

T∑
t=1

ŴtZ
′
t − EWtZ

′
t)+

(AqW − A)(EWtZ
′
t) + A(

1

T

T∑
t=1

ŴtZ
′
t − EWtZ

′
t)

∥∥∥∥
≤
∥∥∥∥(AqW − A)(

1

T

T∑
t=1

ŴtZ
′
t − EWtZ

′
t)

∥∥∥∥+ ∥∥∥∥(AqW − A)(EWtZ
′
t)

∥∥∥∥
+

∥∥∥∥A( 1T
T∑
t=1

ŴtZ
′
t − EWtZ

′
t)

∥∥∥∥
≤(‖AqW − A‖op + ‖A‖op)‖

1

T

T∑
t=1

ŴtZ
′
t − EWtZ

′
t‖+ ‖AqW − A‖op‖EWtZ

′
t‖ .

(95)

By Lemma 5, ‖AqW −A‖op
p→ 0. Moreover, following the proof in Proposition 1, we have for

l = 1, . . . , Kp

TE‖ 1
T

T∑
t=1

ŴtZt,l − EWtZt,l‖2L2 ≤ C (96)

where C is some finite constant. Hence ‖
∑T

t=1WtZ
′
t − EWtZ

′
t‖

p→ 0. Taken together, we
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have

Γ̂Z −
qW∑
j=1

Γ̂WZ(ϕ̂j)Γ̂WZ(ϕ̂j)
′

ρ̂j

p→ ΩZπZ . (97)

Step 2. Note that Ψ12 is a bounded linear operator, therefore,

Ψ12(W )M̂πZ
′ = Ψ12(Ŵ )M̂πZ

′ +Ψ12(W − Ŵ )M̂πZ
′ . (98)

Consider the first term, we have

Ψ12(Ŵt) = Ψ12(
∞∑
l=1

π̂tlϕ̂l) =

qW∑
l=1

Ψ12(ϕ̂l)π̂tl +
∞∑

l=qW+1

Ψ12(ϕ̂l)π̂tl . (99)

Multiply it by M̂πZ
′/T , it becomes

1

T
Ψ12(Ŵ )M̂πZ

′ =
∞∑

l=qW+1

1

T

T∑
t=1

Ψ12(ϕ̂)π̂tl

[
Z ′

t −
qW∑
j=1

〈Ŵt, ϕ̂j〉Γ̂WZ(ϕ̂j)
′

ρ̂j

]
(100)

where the first qW terms disappear because π̂M̂π = 0 by construction. Note also that FPC

scores are mutually independent, thus

1

T

∞∑
l=qW+1

qW∑
j=1

ρ̂−1
j π̂tlπ̂tjΓ̂WZ(ϕ̂j)

′ = 0 . (101)

The remaining terms

∞∑
l=qW+1

Ψ12(ϕ̂)
1

T

T∑
t=1

π̂tlZ
′
t

p→
∞∑

l=qW+1

Ψ12(ϕ̂)EπtlZ
′
t ≤

√
Eπ2

tl

√
EZ ′

tZt . (102)

Since Yt and thus Zt is stationary, EZ ′
tZt is finite. In contrast, by Assumption 3 we have

Eπ2
tl = λl which converges to zero as qW → ∞.
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Turning to Ψ12(W − Ŵ )M̂πZ
′, the logic follows similarly. Note that

1

T
Ψ12(W − Ŵ )M̂πZ

′ =
1

T

T∑
t=1

Ψ12(Wt − Ŵt)

[
Z ′

t −
qW∑
j=1

〈Ŵt, ϕ̂j〉Γ̂WZ(ϕ̂j)
′

ρ̂j

]
. (103)

Consider for example the product with Z ′
t, we have

1

T

T∑
t=1

Ψ12(Wt − Ŵt)Z
′
t = Ψ12

(
1

T

T∑
t=1

(Wt − Ŵt)Z
′
t

)
p→ Ψ12E(Wt − Ŵt)Z

′
t . (104)

By Cauchy-SchwarZ inequality and Lemma 4, the right hand side is op(1).

Step 3. Given what we have shown in Step 2, the last term is trivial to bound. Since

1

T

T∑
t=1

eyt

[
Z ′

t −
qW∑
j=1

〈Ŵt, ϕ̂j〉Γ̂WZ(ϕ̂j)
′

ρ̂j

]

=
1

T

T∑
t=1

eytZ
′
t −

qW∑
j=1

〈 1
T

∑T
t=1 eytŴt, ϕ̂j〉Γ̂WZ(ϕ̂j)

′

ρ̂j

(105)

and by Assumption 4(ii) eyt is independent of both Z ′
t and Wt. Hence the sample mean

converges to zero.

Combining the results from the above steps, consistency follows by Slutsky theorem. ■

Proof. (Lemma 7)

Since the population model of the scalar block can be written as

Y = Ψ11Z +Ψ12(Ŵ ) + ey +Ψ12(W )−Ψ12(Ŵ ) , (106)

the estimator of Ψ12 is

Ψ̂12 =[Ψ11Z +Ψ12(Ŵ ) + ey +Ψ12(W )−Ψ12(Ŵ )]MZ π̂
′(π̂MZ π̂

′)−1

=Ψ12(Ŵ )MZ π̂
′(π̂MZ π̂

′)−1 + eyMZ π̂
′(π̂MZ π̂

′)−1

+ [Ψ12(W )−Ψ12(Ŵ )]MZ π̂
′(π̂MZ π̂

′)−1
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Notice that

Ψ12(Ŵ ) =

[
qW∑
l=1

π̂1,lΨ12(ϕ̂l), . . . ,

qW∑
l=1

π̂T,lΨ12(ϕ̂l)

]

+

[
∞∑

l=qW+1

π̂1,lΨ12(ϕ̂l), . . . ,
∞∑

l=qW+1

π̂T,lΨ12(ϕ̂l)

]

=Ψ12(ϕ̂)π̂ +

[
∞∑

l=qW+1

π̂1,lΨ12(ϕ̂l), . . . ,
∞∑

l=qW+1

π̂T,lΨ12(ϕ̂l)

]
(107)

where Ψ12(ϕ̂) = [Ψ12(ϕ̂1), . . . ,Ψ12(ϕ̂qW )] is a K × qW matrix. Denote Ω̂πZπ = 1
T
π̂MZ π̂

′, and

its j-th column as Ω̂πZπ[·, j]. Then
∑qW

j=1 Ψ̂12[·, j]ϕ̂j − ψ12 contains four terms:

(
qW∑
j=1

〈ϕ̂j, ψ12〉ϕ̂j − ψ12

)
=

∞∑
j=qW+1

〈ϕ̂j, ψ12〉ϕ̂j (108)

qW∑
j=1

∑T
t=1

∑∞
l=qW+1 π̂t,lΨ12(ϕ̂l)

T

[
π̂′
t − Z ′

tΓ̂ZΓ̂WZ(ϕ̂)
]
Ω̂−1

πZπ[·, j]ϕ̂j (109)

qW∑
j=1

∑T
t=1 Ψ12(Wt − Ŵt)

T

[
π̂′
t − Z ′

tΓ̂ZΓ̂WZ(ϕ̂)
]
Ω̂−1

πZπ[·, j]ϕ̂j (110)

qW∑
j=1

∑T
t=1 eyt
T

[
π̂′
t − Z ′

tΓ̂ZΓ̂WZ(ϕ̂)
]
Ω̂−1

πZπ[·, j]ϕ̂j (111)

The proof follows exactly the same logic as in Lemma 6, with the only difference that

now the difference converges to zero in L2 sense. Consider, for example the first term. Since

ψ12 is in L2, we have

‖ψ12‖2 =
∞∑
j=1

〈ψ12, ϕ̂j〉2 <∞ (112)

by the Parseval identity. Given that it is bounded, we can always find a qW that is large

enough so that
∞∑

j=qW+1

〈ϕ̂j, ψ12〉
p→ 0. (113)
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In this case,

‖
∞∑

j=qW+1

〈ϕ̂j, ψ12〉ϕ̂j‖
p→ 0 . (114)

The remaining terms are bounded in the same way. ■

Proof. (Lemma 8)

As (25) indicates, the functional coefficients are estimated by

Ψ̂21(u)︸ ︷︷ ︸
1×Kp

=

qf∑
j=1

Ψ̂21[j, ·]ξ̂j (115)

where Ψ̂21[j, ·] is the j-th row of

Ψ̂21 = η̂M̂πZ
′(ZM̂πZ

′)−1 . (116)

We break down η̂ into four terms. Note that η is a qf × T matrix, with the (t, r) element

η̂tr = 〈f̂t, ξ̂r〉 = 〈ft, ξ̂r〉+ 〈f̂t − ft, ξ̂r〉

= 〈Ψ21Zt +Ψ22(Wt) + eft, ξ̂r〉+ 〈f̂t − ft, ξ̂r〉

= 〈Ψ21, ξ̂r〉Zt + 〈Ψ22(Wt), ξ̂r〉+ 〈eft, ξ̂r〉+ 〈f̂t − ft, ξ̂r〉 . (117)

Hence η̂ can be written as

η̂ = 〈 ξ̂︸︷︷︸
qf×1

, Ψ21︸︷︷︸
1×Kp

〉 Z︸︷︷︸
Kp×T

+〈ξ̂,Ψ22(W )︸ ︷︷ ︸
1×T

〉+ 〈ξ̂, ef︸︷︷︸
1×T

〉+ 〈ξ̂, f̂ − f︸ ︷︷ ︸
1×T

〉 . (118)

With the above decomposition, we can write Ψ̂21 as

Ψ̂21 =〈ξ̂,Ψ21〉+ 〈ξ̂,Ψ22(W )〉M̂πZ
′(ZM̂πZ

′)−1

+ 〈ξ̂, ef〉M̂πZ
′(ZM̂πZ

′)−1 + 〈ξ̂, f̂ − f〉M̂πZ
′(ZM̂πZ

′)−1 . (119)
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Subtract Ψ21 from
∑qf

j=1 Ψ̂21[j, ·]ξ̂j(u), we have again four terms:

(
qf∑
j=1

〈ξ̂j,Ψ21〉ξ̂j −Ψ21

)
(120)

(
1

T

qf∑
j=1

〈ξ̂j,Ψ22(W )〉ξ̂jM̂πZ
′

)(
ZM̂πZ

′

T

)−1

(121)

(
1

T

qf∑
j=1

〈ξ̂j, f̂ − f〉ξ̂jM̂πZ
′

)(
ZM̂πZ

′

T

)−1

(122)

(
1

T

qf∑
j=1

〈ξ̂j, ef〉ξ̂jM̂πZ
′

)(
ZM̂πZ

′

T

)−1

(123)

Term 1.

Rewrite the first term by projecting Ψ21 on ξ̂j,

∥∥∥∥ qf∑
j=1

〈ξ̂j,Ψ21〉ξ̂j −
∞∑
j=1

〈ξ̂j,Ψ21〉ξ̂j
∥∥∥∥ =

∥∥∥∥ ∞∑
j=qf+1

〈ξ̂j,Ψ21〉ξ̂j
∥∥∥∥ (124)

which is op(1) following the logic of Lemma 7.

Term 2.

As for the second term, first notice that by Lemma 6,

ZM̂πZ
′

T
=

(
Γ̂Z −

qW∑
j=1

Γ̂WZ(ϕ̂j)Γ̂WZ(ϕ̂j)
′

ρ̂j

)
p→ ΩZπZ (125)

which is positive definite. Hence we only discuss the converges of the left part. Consider the

j-th item. It is equivalent to

1

T

T∑
t=1

〈ξ̂j,Ψ22(Wt)〉Z ′
t −

qW∑
l=1

ρ̂−1
l

(
1

T

T∑
t=1

〈ξ̂j,Ψ22(Wt)〉π̂tl

)(
1

T

T∑
t=1

π̂tlZ
′
t

)
. (126)
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Project Wt into the space of ϕ̂j, the second part becomes

qW∑
l=1

ρ̂−1
l

(
1

T

T∑
t=1

〈ξ̂j,Ψ22(
∞∑
r=1

π̂trϕ̂r)〉π̂tl

)(
1

T

T∑
t=1

π̂tlZ
′
t

)

=

qW∑
l=1

∞∑
r=1

ρ̂−1
l 〈ξ̂j,Ψ22(ϕ̂r)〉

(
1

T

T∑
t=1

π̂trπ̂tl

)(
1

T

T∑
t=1

π̂tlZ
′
t

)

=

qW∑
l=1

ρ̂−1
l 〈ξ̂j,Ψ22(ϕ̂l)〉

(
1

T

T∑
t=1

π̂2
tl

)(
1

T

T∑
t=1

π̂tlZ
′
t

)

=

qW∑
l=1

〈ξ̂j,Ψ22(ϕ̂l)〉

(
1

T

T∑
t=1

π̂tlZ
′
t

)
. (127)

Similarly, for the first part we have

1√
T

T∑
t=1

〈ξ̂j,Ψ22(Wt)〉Z ′
t =

∞∑
l=1

〈ξ̂j,Ψ22(ϕ̂l)〉

(
1

T

T∑
t=1

π̂tlZ
′
t

)
(128)

Summing over qf terms, the difference between the two parts is

∥∥∥∥ qf∑
j=1

∞∑
l=qW+1

〈ξ̂j,Ψ22(ϕ̂l)〉ξ̂j

(
1

T

T∑
t=1

π̂tlZ
′
t

)∥∥∥∥
=

∥∥∥∥ qf∑
j=1

〈ξ̂j,
∞∑

l=qW+1

Ψ22(ϕ̂l)

(
1

T

T∑
t=1

π̂tlZ
′
t

)
〉ξ̂j
∥∥∥∥

p→
∥∥∥∥ qf∑
j=1

〈ξ̂j,
∞∑

l=qW+1

Ψ22(ϕ̂l)ιl〉ξ̂j
∥∥∥∥ . (129)

where ιl is op(1) following the argument in Lemma 6 (Step 2). Moreover, by Assumption 4(ii)

Ψ22 is Hilbert-Schmidt and thus Ψ22(ϕ̂l) is bounded. Therefore, the above term converges

to zero.

Term 3.

Consider again the j-th term, we end up with

〈ξ̂j,
1

T

T∑
t=1

(f̂t − ft)Z
′
t〉 −

qW∑
l=1

ρ̂−1
l

(
〈ξ̂j,

1

T

T∑
t=1

(f̂t − ft)π̂tl〉

)(
1

T

T∑
t=1

π̂tlZ
′
t

)
. (130)
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By Lemma 4, we have

1

T

T∑
t=1

(f̂t − ft)Z
′
t = op(1),

1

T

T∑
t=1

(f̂t − ft)π̂tl = op(1) (131)

Term 4.

Following Lemma 6, we have

1

T

qf∑
j=1

ξ̂j〈ξ̂j, ef〉M̂πZ
′ =

1

T

T∑
t=1

(
qf∑
j=1

ξ̂j〈ξ̂j, eft〉

)[
z′t −

qW∑
l=1

〈Ŵt, ϕ̂l〉Γ̂WZ(ϕ̂l)
′

ρ̂l

]

=

(
qf∑
j=1

ξ̂j〈ξ̂j,
1

T

T∑
t=1

eftz
′
t〉

)
−

qf∑
j=1

qW∑
l=1

ρ̂−1
l ξ̂j

∑T
t=1〈ξ̂j, eft〉〈Ŵt, ϕ̂l〉

T
Γ̂WZ(ϕ̂l)

′

By Assumption 4(ii), eft is an iid H-white noise. Hence the first term converges to zero in

L2 as

‖Eeftz′t‖ = 0 . (132)

Similarly, the second term converges to zero as

∑T
t=1〈ξ̂j, eft〉〈Ŵt, ϕ̂l〉

T
=

∫∫ (
1

T

T∑
t=1

eft(u)Ŵt(v)

)
︸ ︷︷ ︸

p→0 in L2

ξ̂j(u)ϕ̂l(v)dudv . (133)

■

Proof. (Lemma 9)

Given Lemma 7 and 8, the proof of Ψ̂22 is trivial. By the decomposition of η̂ in (118), we

have

Ψ̂22 =
[
〈ξ̂,Ψ22(Ŵ )〉+ 〈ξ̂,Ψ22(W − Ŵ )〉+ 〈ξ̂, ef〉+ 〈ξ̂, f̂ − f〉

]
MZ π̂

′Ω̂πZπ. (134)

By Lemma 7, the term with 〈ξ̂,Ψ22(W − Ŵ )〉 goes to zero; by Lemma 8, the terms with

〈ξ̂, ef〉 and 〈ξ̂, f̂ − f〉 converge to zero. Hence, multiplying them by ξ̂j(u)ϕ̂k(v) yields mean
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zero random functions. Given that, we can simply focus on the term with 〈ξ̂,Ψ22(Ŵ )〉.

Notice that (similar to Lemma 7),

Ψ22(Ŵ ) = Ψ22(ϕ̂)π̂ +

[
∞∑

l=qW+1

π̂1,lΨ22(ϕ̂l), . . . ,
∞∑

l=qW+1

π̂T,lΨ22(ϕ̂l)

]
. (135)

We can write down the estimated kernel ψ̂22 by

qf∑
i=1

qW∑
j=1

〈ξ̂i,Ψ22(ϕ̂j)〉ξ̂i(u)ϕ̂j(v)−

qf∑
i=1

qW∑
j=1

∑T
t=1

∑∞
l=qW+1〈ξ̂i,Ψ22(ϕ̂l)〉π̂tl

T

[
π̂′
t − Z ′

tΓ̂ZΓ̂WZ(ϕ̂)
]
Ω̂−1

πZπ[i, j]ξ̂i(u)ϕ̂j(v) (136)

. The second term converges to mean zero random functions following exactly the same

argument as before. The difference between the first term and the true kernel is

‖
qf∑
i=1

qW∑
j=1

〈ξ̂i,Ψ22(ϕ̂j)〉ξ̂i(u)ϕ̂j(v)− ψ22‖

=‖
qf∑
i=1

qW∑
j=1

〈ξ̂i, 〈ψ22, ϕ̂j〉〉ξ̂i(u)ϕ̂j(v)− ψ22‖ (137)

By Assumption 3, both qf and qW go to infinity and by Assumption 4(ii) the operator Ψ22

is bounded. Hence the above term converges to zero. ■
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Appendix B Data Preprocessing

First, I discuss the construction of household income data. Specifically, net household income

before the deduction of housing costs (ENTINCHH) is first computed by adding net earnings

including self-employed income, net investment income, net occupational pensions, benefits,

children income and other income sources, and subtracting deductions. Before deducting

the housing costs, net household income (BHC) is adjusted using the Survey of Personal

Incomes (SPI) that contains information of the very rich households. In particular, rich

households in the samples are re-weighted to reflect the total number of the very rich in

the UK. After adjusted using SPI data, the net household income after the housing costs

(ESAHCHH) is computed by subtracting the housing costs. Further, ESAHCHH is divided

by OECD equivalence scales, and the results should be interpreted as equivalized income for

a childless couple. Finally, the income is deflated using the associated price series. Details

of the construction of HBAI is provided in Goodman and Webb (1994).

As for the SVAR step, the aggregate variables are obtained from Cloyne (2013). More-

over, the 90-10 ratio is computed using the percentiles weighted by the sampling frequency.

As is shown in Figure 10, the percentiles computed using the HBAI dataset closely match the

yearly Living Standards Poverty and Inequality (LSPI) data constructed by the IFS (Keiller

et al., 2020). The mean log deviations (MLD) is computed by

MLD = ln(x̄t)− ¯lnxit

where xit are the income of household i at time t and x̄t =
1
Nt

∑Nt

i=1 xit is the mean income.

By definition, observations with negative income are dropped.
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Tables and figures

Table 1: Simulation design: parameter values

Design 1 Design 2

ayy 0.4 0.8
ayf (-0.3, 0.2, 0.1) (-0.6, -0.2, -0.1)
afy (-0.6, -0.3, -0.4) (0.5, 0.3, 0.4)

aff

−0.05 −0.23 0.76
0.8 −0.05 0.04
0.04 0.76 0.23

 0.8 0 0
0 0.8 0
0 0 0.8


σ11 1 1
σ12 (1, 1/2, 1/3) (1, 1, 1)
σ21 (0, 0, 0) (0, 0, 0)

σ22

1 0 0
0 1/2 0
0 0 1/3

 1 0 0
0 1 0
0 0 1
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Table 2: Simulation Results

Design 1 Design 2

Horizon MISE UE Coverage MISE UE Coverage

T=100

0 0.0366 0.2394 35.08 0.0464 0.2628 35.45
1 0.0597 0.3375 85.33 0.0731 0.3400 86.09
2 0.0581 0.3405 88.28 0.1099 0.4187 84.54
3 0.0622 0.3612 89.00 0.1223 0.4471 91.45
4 0.0548 0.3335 89.91 0.5722 1.1072 60.59
5 0.0453 0.3053 90.34 2.1007 2.2932 24.51
6 0.0420 0.2930 90.37 4.0710 3.2445 17.87
7 0.0361 0.2700 91.17 4.6036 3.4572 16.78
8 0.0296 0.2458 91.97 2.9225 2.7284 19.37
9 0.0244 0.2235 92.91 0.7514 1.2805 54.25
10 0.0192 0.1966 93.86 0.1872 0.5758 82.02
11 0.0152 0.1708 94.57 0.8806 1.4271 42.83
12 0.0119 0.1480 95.81 0.9236 1.4734 39.92

T=200

0 0.0157 0.1610 24.80 0.0188 0.1723 25.51
1 0.0262 0.2291 86.49 0.0305 0.2255 85.93
2 0.0265 0.2341 88.89 0.0463 0.2768 86.93
3 0.0314 0.2594 87.65 0.0875 0.3947 86.67
4 0.0268 0.2343 88.55 0.6577 1.2645 32.60
5 0.0210 0.2095 89.80 2.3676 2.4846 17.13
6 0.0192 0.1989 91.11 4.4934 3.4459 14.21
7 0.0167 0.1836 92.28 5.0647 3.6617 13.66
8 0.0147 0.1725 93.07 3.2699 2.9308 15.18
9 0.0126 0.1593 94.03 0.8758 1.4700 26.44
10 0.0105 0.1438 94.49 0.0811 0.3745 88.72
11 0.0089 0.1305 94.57 0.6406 1.2368 35.40
12 0.0071 0.1153 95.27 0.6969 1.2993 32.41

T=500

0 0.0057 0.0982 16.47 0.0062 0.1026 15.54
1 0.0092 0.1365 87.47 0.0101 0.1315 86.94
2 0.0097 0.1425 89.03 0.0158 0.1624 89.52
3 0.0144 0.1766 84.16 0.0750 0.3962 68.72
4 0.0113 0.1527 87.07 0.7088 1.3558 19.35
5 0.0078 0.1289 88.26 2.5061 2.5798 13.36
6 0.0072 0.1229 90.51 4.7012 3.5418 11.39
7 0.0064 0.1152 92.87 5.2873 3.7572 10.98
8 0.0065 0.1161 91.77 3.4389 3.0256 12.05
9 0.0057 0.1077 92.26 0.9401 1.5636 16.92
10 0.0050 0.1006 93.57 0.0318 0.2309 91.80
11 0.0048 0.0968 92.51 0.5186 1.1444 21.41
12 0.0038 0.0855 91.98 0.5753 1.2098 19.72
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(a) Design 1 (b) Design 2

Figure 1: Simulation: True IR

(a) Design 1 (b) Design 2

Figure 2: Simulation: Example
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(a) Income Density (b) Income Density (Trend)

(c) Income Density (Detrended)

Figure 3: Income Density
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Figure 4: FPCA Criterion
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Figure 5: Density Recovered by FPCA
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Figure 6: Responses of Aggregates
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(a) Income Density Responses Over Horizon

(b) Income Density Responses (Stacked)

Figure 7: Distributional Effects of Tax Cuts
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(a) Actual Density (b) Simulated Density

Figure 8: Simulated Income Density (Detrended)
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Figure 9: Responses of Inequality Measures
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Figure 10: Comparison of Percentiles
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